Fundamentals of Reactive Systems Preliminaries

Francesco Tiezzi

University of Camerino francesco.tiezzi@unicam.it

A.A. 2020/2021

Set Notation

 $A \subseteq B$ every element of A is in B

 $A \subset B$ if $A \subseteq B$ and there is one element of B not in A

 $A \subseteq B$ and $B \subseteq A$ implies A = B

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\} \qquad (\bigcup_{i \in I} A_i)$ $A \cap B = \{x \mid x \in A \text{ and } x \in B\} \qquad (\bigcap_{i \in I} A_i)$ $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$ $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\} \quad ordered \text{ pairs} \quad (\times_{i=1}^n A_i)$ $2^A = \{X \mid X \subseteq A\} \qquad powerset$

Set Notation

 $A \subseteq B$ every element of A is in B

 $A \subset B$ if $A \subseteq B$ and there is one element of B not in A

 $A \subseteq B$ and $B \subseteq A$ implies A = B

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\} \qquad (\bigcup_{i \in I} A_i)$$
$$A \cap B = \{x \mid x \in A \text{ and } x \in B\} \qquad (\bigcap_{i \in I} A_i)$$
$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$
$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\} \quad ordered \text{ pairs} \quad (\times_{i=1}^n A_i)$$
$$2^A = \{X \mid X \subseteq A\} \qquad powerset$$

Relations

 $R \subseteq A \times B$ is a relation on sets A and B $(a, b) \in R \equiv R(a, b) \equiv aRb$ notation $(R \subseteq \times_{i=1}^{n} A_i)$

$$\begin{aligned} Id_A &= \{(a, a) \mid a \in A\} & \text{(identity)} \\ R^{-1} &= \{(y, x) \mid (x, y) \in R\} \subseteq B \times A & \text{(inverse)} \\ R_1 \cdot R_2 &= \{(x, z) \mid \exists y \in B, (x, y) \in R_1 \land (y, z) \in R_2\} \subseteq A \times C & \text{(composition)} \end{aligned}$$

Some basic constructions:

$$\begin{array}{rcl} R^0 & = & Id_A \\ R^{n+1} & = & R \cdot R^n \\ R^* & = & \bigcup_{n \geq 0} R^n \\ R^+ & = & \bigcup_{n \geq 1} R^n \end{array}$$

Note that: $R^1 = R \cdot R^0 = R$, $R^* = Id_A \cup R^+$ and $R^+ = \{(x, y) \mid \exists n, \exists x_1, ..., x_n \text{ with } x_i Rx_{i+1} \ (1 \le i \le n-1), \ x_1 = x, \ x_n = y\}$ F. Tiezzi (Unicam) FRS 3/28

Relations

 $R \subseteq A \times B$ is a relation on sets A and B $(a, b) \in R \equiv R(a, b) \equiv aRb$ notation $(R \subseteq \times_{i=1}^{n} A_i)$

$$\begin{aligned} Id_A &= \{(a, a) \mid a \in A\} \\ R^{-1} &= \{(y, x) \mid (x, y) \in R\} \subseteq B \times A \end{aligned} \tag{identity}$$

 $R_1 \cdot R_2 = \{(x,z) \mid \exists y \in B. (x,y) \in R_1 \land (y,z) \in R_2\} \subseteq A \times C \text{ (composition)}$

Some basic constructions:

$$\begin{array}{rcl} R^0 & = & Id_A \\ R^{n+1} & = & R \cdot R^n \\ R^* & = & \bigcup_{n \geq 0} R^n \\ R^+ & = & \bigcup_{n > 1} R^n \end{array}$$

Note that: $R^1 = R \cdot R^0 = R$, $R^* = Id_A \cup R^+$ and $R^+ = \{(x, y) \mid \exists n, \exists x_1, \dots, x_n \text{ with } x_i Rx_{i+1} \ (1 \le i \le n-1), \ x_1 = x, \ x_n = y\}$ F. Tiezzi (Unicam) FRS 3/28

Relations

 $R \subseteq A \times B$ is a relation on sets A and B $(a, b) \in R \equiv R(a, b) \equiv aRb$ notation $(R \subseteq \times_{i=1}^{n} A_i)$

$$Id_A = \{(a, a) \mid a \in A\}$$
 (identity)
$$P^{-1} = \{(a, a) \mid a \in A\}$$
 (inverse)

$$R^{-1} = \{(y, x) \mid (x, y) \in R\} \subseteq B \times A$$
 (inverse)

 $R_1 \cdot R_2 = \{(x, z) \mid \exists y \in B. (x, y) \in R_1 \land (y, z) \in R_2\} \subseteq A \times C \text{ (composition)}$

Some basic constructions:

$$\begin{array}{rcl} R^0 &=& Id_A\\ R^{n+1} &=& R\cdot R^n\\ R^* &=& \bigcup_{n\geq 0} R^n\\ R^+ &=& \bigcup_{n\geq 1} R^n \end{array}$$

Note that: $R^1 = R \cdot R^0 = R$, $R^* = Id_A \cup R^+$ and $R^+ = \{(x, y) \mid \exists n, \exists x_1, \dots, x_n \text{ with } x_i Rx_{i+1} \ (1 \le i \le n-1), \ x_1 = x, \ x_n = y\}$ F. Tiezzi (Unicam) FRS 3/28

Properties of Relations

Binary Relations

A binary relation $R \subseteq A$	$X \times A$ is	(same set A)
<i>reflexive</i> : if $\forall x \in$		
	\in A, $(x,y) \in$ $R \Rightarrow (y,x)$	
antisymmetric: if $\forall x, y$	\in A, $(x,y) \in$ R \land (y,x)	$\in R \Rightarrow x = y;$
<i>transitive</i> : if $\forall x, y, z$	$z \in A$, $(x, y) \in R \land (y, y)$	$z) \in R \Rightarrow (x,z) \in R$

Closure of Relations

 $S = R \cup Id_A$ $S = R \cup R^{-1}$ $S = R^+$ $S = R^*$

the reflexive closure of Rthe symmetric closure of Rthe transitive closure of Reffective and transitive closure of R

Properties of Relations

Binary Relations

A binary relation	on $R \subseteq A imes A$ is	(same set A)
	$ \text{if } \forall x \in A, (x,x) \in R, \\$	
symmetric:	$ \text{if } \forall x,y \in A, (x,y) \in R \Rightarrow (y,x) \in \\ $	R,
antisymmetric:	if $\forall x, y \in A$, $(x, y) \in R \land (y, x) \in$	$R \Rightarrow x = y;$
transitive:	$ \text{if } \forall x,y,z \in A, \ (x,y) \in R \ \land \ (y,z) \in R \ \land \ (y,z)$	$\in R \Rightarrow (x,z) \in R$

Closure of Relations

$S = R \cup Id_A$	the reflexive closure of R
$S=R\cup R^{-1}$	the symmetric closure of <i>R</i>
$S = R^+$	the transitive closure of R
$S = R^*$	the reflexive and transitive closure of R

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Examples

- orders: less-than-or-equal-to (\leq) on \mathbb{R} , set inclusion (\subseteq),...
- equivalences: equal-to (=) on \mathbb{R} , congruent-mod-n, ...
- preorders: reachability in directed graphs, some subtyping,...

Kernel relation

• Given a preorder R its kernel, defined as $K = R \cap R^{-1}$, is an equivalence relation

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Examples

- orders: less-than-or-equal-to (\leqslant) on \mathbb{R} , set inclusion (\subseteq),...
- equivalences: equal-to (=) on \mathbb{R} , congruent-mod-n, ...
- preorders: reachability in directed graphs, some subtyping,...

Kernel relation

Given a preorder R its kernel, defined as K = R ∩ R⁻¹, is an equivalence relation

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Examples

- orders: less-than-or-equal-to (\leqslant) on \mathbb{R} , set inclusion (\subseteq),...
- equivalences: equal-to (=) on \mathbb{R} , congruent-mod-n, ...
- preorders: reachability in directed graphs, some subtyping,...

Kernel relation

• Given a preorder R its kernel, defined as $K = R \cap R^{-1}$, is an equivalence relation

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ R(7,7),

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ R(7,7), R(7,1), R(1,7),

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$

R(7,7), R(7,1), R(1,7), R(7,10), R(1,10)

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$

 $R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \ldots$

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ $R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \dots$ $[0] = \{0, 3, 6, 9, \dots\}$ equivalence classes: $[1] = \{1, 4, 7, 10, \dots\}$ - have a representative $[2] = \{2, 5, 8, 11, \dots\}$ - are disjoint

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ $R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \dots$ $[0] = \{0, 3, 6, 9, \dots\}$ equivalence classes: $[1] = \{1, 4, 7, 10, \dots\}$ - have a representative $[2] = \{2, 5, 8, 11, \dots\}$ - are disjoint

An equivalence class is a subset C of A such that

$$x, y \in C \Rightarrow (x, y) \in R$$
 consistent and
 $x \in C \land (x, y) \in R \Rightarrow y \in C$ saturated

Examples of **equivalence relations**: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ $R(7,7), R(7,1), R(1,7), R(7,10), R(1,10), \dots$ $[0] = \{0, 3, 6, 9, \dots\}$ equivalence classes: $[1] = \{1, 4, 7, 10, \dots\}$ - have a representative $[2] = \{2, 5, 8, 11, \dots\}$ - are disjoint

The **quotient set** Q_A^R of A modulo R is a partition of A is the set of equivalence classes induced by R on A

Example: $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid (x \equiv y) \mod 3\}$ $Q_{\mathbb{N}}^{R} = \{ [0], [1], [2] \}$

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$\forall x, y, z. \ (x, y) \in f \land (x, z) \in f \Rightarrow y = z$$

We denote partial function by $f: A \rightarrow B$

Total Functions

A (total) function is a partial function $f : A \rightarrow B$ such that

 $\forall x \exists y. (x, y) \in f$

We denote total function by $f: A \rightarrow B$

Functions (total or partial) can be *monotone*, *continuous*, *injective*, *surjective*, *bijective*, *invertible*...

F. Tiezzi (Unicam)

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$\forall x, y, z. \ (x, y) \in f \land (x, z) \in f \Rightarrow y = z$$

We denote partial function by $f: A \rightarrow B$

Total Functions

A (total) function is a partial function $f : A \rightarrow B$ such that

$$\forall x \exists y. (x,y) \in f$$

We denote total function by $f: A \rightarrow B$

Functions (total or partial) can be *monotone*, *continuous*, *injective*, *surjective*, *bijective*, *invertible*...

F. Tiezzi (Unicam)

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$\forall x, y, z. \ (x, y) \in f \land (x, z) \in f \Rightarrow y = z$$

We denote partial function by $f: A \rightarrow B$

Total Functions

A (total) function is a partial function $f : A \rightarrow B$ such that

$$\forall x \exists y. (x,y) \in f$$

We denote total function by $f: A \rightarrow B$

Functions (total or partial) can be *monotone*, *continuous*, *injective*, *surjective*, *bijective*, *invertible*...

Mathematical Induction

To prove that P(n) holds for every natural number $n \in \mathbb{N}$, prove

○ P(0) **②** for any k ∈ N, P(k) implies P(k + 1)

Example: Show that $sum(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$

Mathematical Induction

To prove that P(n) holds for every natural number $n \in \mathbb{N}$, prove

○ P(0) **②** for any k ∈ N, P(k) implies P(k + 1)

Example: Show that $sum(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$

Mathematical Induction

To prove that P(n) holds for every natural number $n \in \mathbb{N}$, prove

P(0)
P(a) for any k ∈ N, P(k) implies P(k + 1)

Example: Show that $sum(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$

(1)
$$sum(0) = \frac{0(0+1)}{2} = 0$$
 base case

Mathematical Induction

To prove that P(n) holds for every natural number $n \in \mathbb{N}$, prove

Example: Show that
$$sum(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 for every $n \in \mathbb{N}$
(1) $sum(0) = \frac{0(0+1)}{2} = 0$ base case
(2) to show: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ implies $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$
assume $sum(n) = \frac{n(n+1)}{2}$, for a generic n
 $sum(n+1) = sum(n) + (n+1) =$ properties of summation
 $= \frac{n(n+1)}{2} + (n+1)$ inductive hypothesis
 $= \frac{(n+1)(n+2)}{2}$ qed

FRS

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- Proof by intuition: I have this feeling...
- O Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- Proof by intuition: I have this feeling...
- O Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- Proof by intuition: I have this feeling...
- O Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- Proof by intuition: I have this feeling...
- Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- Solution Proof by intuition: I have this feeling...
- Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false!?
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false ??
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

Playful digression

Some "advanced" proof methods

- Proof by obviousness: So evident it need not to be mentioned
- Proof by general agreement: All in favor?
- Proof by majority: When general agreement fails
- Proof by plausibility: It sounds good
- **9** Proof by intuition: I have this feeling...
- **O** Proof by lost reference: I saw it somewhere
- Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
- Proof by logic: It is on the textbook, hence it must be true
- Proof by intimidation: Who is saying that it is false ??
- Proof by authority: Don Knuth said it was true
- Proof by deception: Everybody please turn their backs...
- Proof by divine word: Lord said let it be true

basis: the set I of initial elements of S**induction:** rules R for constructing elements in S from elements in S**closure:** S is the least set containing I and closed w.r.t. R

Natural numbers

$$I = \{0\}, \quad R_1: \text{ if } X \in S \text{ then } s(X) \in S$$

$$S = \{0, s(0), s(s(0)), \ldots\}$$

$S = Lists(\mathbb{N})$, lists of numbers in \mathbb{N}

$$I = \{[]\}, R_1: \text{ if } X \in S \text{ and } n \in \mathbb{N} \text{ then } [n|X] \in S \}$$

 $S = \{[], [0], [1], [2], \dots, [0, 0], [0, 1], [0, 2], \dots, [1, 0], [1, 1], [1, 2], \dots\}$

n-ary trees

$$I = \{\varepsilon\}, \quad R_1: \text{ if } X_1, \dots, X_n \in S \text{ then } t(X_1, \dots, X_n) \in S$$

 $S = \{\varepsilon, t(\varepsilon), t(\varepsilon, \varepsilon), \dots, t(t(\varepsilon)), \dots, t(\varepsilon, t(t(\varepsilon), \varepsilon), t(\varepsilon, \varepsilon, \varepsilon)), \dots\}$

basis: the set I of initial elements of S**induction:** rules R for constructing elements in S from elements in S**closure:** S is the least set containing I and closed w.r.t. R

Natural numbers

$$I = \{0\}, \quad R_1: \text{ if } X \in S \text{ then } s(X) \in S$$

$$S = \{0, s(0), s(s(0)), \ldots\}$$

$S = Lists(\mathbb{N})$, lists of numbers in \mathbb{N}

 $I = \{[]\}, R_1: \text{ if } X \in S \text{ and } n \in \mathbb{N} \text{ then } [n|X] \in S \}$

 $S = \{[], [0], [1], [2], \dots, [0, 0], [0, 1], [0, 2], \dots, [1, 0], [1, 1], [1, 2], \dots\}$

n-ary trees

 $I = \{\varepsilon\}, \quad R_1: \text{ if } X_1, \dots, X_n \in S \text{ then } t(X_1, \dots, X_n) \in S$

 $S = \{arepsilon, t(arepsilon), \ldots, t(t(arepsilon)), \ldots, t(arepsilon, t(arepsilon), arepsilon), t(arepsilon, arepsilon), \ldots \}$

basis: the set I of initial elements of S**induction:** rules R for constructing elements in S from elements in S**closure:** S is the least set containing I and closed w.r.t. R

Natural numbers

$$I = \{0\}, \quad R_1 \colon ext{ if } X \in S ext{ then } s(X) \in S$$

$$S = \{0, s(0), s(s(0)), \ldots\}$$

$S = Lists(\mathbb{N})$, lists of numbers in \mathbb{N}

$$I = \{[]\}, \quad R_1: \text{ if } X \in S \text{ and } n \in \mathbb{N} \text{ then } [n|X] \in S \}$$

 $S = \{[], [0], [1], [2], \dots, [0, 0], [0, 1], [0, 2], \dots, [1, 0], [1, 1], [1, 2], \dots\}$

n-ary trees

$$I = \{\varepsilon\}, \quad R_1: \text{ if } X_1, \dots, X_n \in S \text{ then } t(X_1, \dots, X_n) \in S$$

 $S = \{\varepsilon, t(\varepsilon), t(\varepsilon, \varepsilon), \dots, t(t(\varepsilon)), \dots, t(\varepsilon, t(t(\varepsilon), \varepsilon), t(\varepsilon, \varepsilon, \varepsilon)), \dots\}$

basis: the set I of initial elements of S**induction:** rules R for constructing elements in S from elements in S**closure:** S is the least set containing I and closed w.r.t. R

Natural numbers

$$I = \{0\}, \quad R_1 \colon ext{ if } X \in S ext{ then } s(X) \in S$$

$$S = \{0, s(0), s(s(0)), \ldots\}$$

$S = Lists(\mathbb{N})$, lists of numbers in \mathbb{N}

$$I = \{[]\}, \quad R_1: \text{ if } X \in S \text{ and } n \in \mathbb{N} \text{ then } [n|X] \in S \}$$

$$S = \{[], [0], [1], [2], \dots, [0, 0], [0, 1], [0, 2], \dots, [1, 0], [1, 1], [1, 2], \dots\}$$

n-ary trees

$$I = \{\varepsilon\}, \quad R_1: \text{ if } X_1, \ldots, X_n \in S \text{ then } t(X_1, \ldots, X_n) \in S$$

$$S = \{\varepsilon, t(\varepsilon), t(\varepsilon, \varepsilon), \dots, t(t(\varepsilon)), \dots, t(\varepsilon, t(t(\varepsilon), \varepsilon), t(\varepsilon, \varepsilon, \varepsilon)), \dots\}$$

Structural Induction

Let us consider a set S inductively defined by a set $C = \{c_1, \ldots, c_n\}$ of constructors of arity $\{a_1, \ldots, a_n\}$ with • $I = \{c_i() \mid a_i = 0\}$ • R_i : if $X_1, \ldots, X_{a_i} \in S$ then $c_i(X_1, \ldots, X_{a_i}) \in S$ To prove that P(x) holds for every $x \in S$, it is sufficient to prove that

- for every constructor $c_k \in C$ and
- for every $s_1, \ldots, s_k \in S$, where k is the arity of c_k

$$P(s_1),\ldots,P(s_k) \implies P(c_k(s_1,\ldots,s_k))$$

Notice that the base case is the one dealing with constructors of arity 0 i.e. with constants

F. Tiezzi (Unicam)

Prove that $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$ where

- $sum(\ell)$ is the sum of the elements in the list ℓ
- $max(\ell)$ is the greatest element in ℓ (with max([]) = 0)
- $len(\ell)$ is the number of elements in ℓ

Exercise: prove $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$

 $sum([]) = 0 \qquad len([]) = 0$ $sum([n|X]) = n + sum(X) \qquad len([n|X]) = 1 + len(X)$ max([]) = 0 $max([n|X]) = n \qquad \text{if } max(X) \le n$ $max([n|X]) = max(X) \qquad \text{if } n < max(X)$

Exercise: prove $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$

 $\begin{aligned} sum([]) &= 0 & len([]) &= 0 \\ sum([n|X]) &= n + sum(X) & len([n|X]) &= 1 + len(X) \\ max([]) &= 0 \\ max([n|X]) &= n & \text{if } max(X) \leq n \\ max([n|X]) &= max(X) & \text{if } n < max(X) \end{aligned}$

(1)
$$sum([]) \le max([]) * len([])$$

 $0 \le 0 * 0$

applying definitions

Exercise: prove $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$

$$\begin{aligned} sum([]) &= 0 & len([]) &= 0 \\ sum([n|X]) &= n + sum(X) & len([n|X]) &= 1 + len(X) \\ max([]) &= 0 & \\ max([n|X]) &= n & \text{if } max(X) \leq n \\ max([n|X]) &= max(X) & \text{if } n < max(X) \end{aligned}$$

(1)
$$sum([]) \le max([]) * len([])$$

 $0 \le 0 * 0$

applying definitions

(2) assume $sum(\ell) \le max(\ell) * len(\ell)$ inductive hyp. prove $sum([n|\ell]) \le max([n|\ell]) * len([n|\ell])$ for any $n \in \mathbb{N}$

)

Exercise: prove $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$

$$\begin{aligned} sum([]) &= 0 & len([]) &= 0 \\ sum([n|X]) &= n + sum(X) & len([n|X]) &= 1 + len(X) \\ max([]) &= 0 \\ max([n|X]) &= n & \text{if } max(X) \leq n \\ max([n|X]) &= max(X) & \text{if } n < max(X) \end{aligned}$$
(a)

(1)
$$sum([]) \le max([]) * len([])$$

 $0 \le 0 * 0$ applying definitions

(2) assume
$$sum(\ell) \le max(\ell) * len(\ell)$$
 inductive hyp.
prove $sum([n|\ell]) \le max([n|\ell]) * len([n|\ell])$ for any $n \in \mathbb{N}$
(a) $n + sum(\ell) \le n * (1 + len(\ell))$ if $max(\ell) \le n$ applying definitions
 $sum(\ell) \le hyp \quad max(\ell) * len(\ell) \le (a) \quad n * len(\ell)$ QED

Exercise: prove $sum(\ell) \le max(\ell) * len(\ell)$, for every $\ell \in Lists(\mathbb{N})$

$$\begin{split} sum([]) &= 0 & len([]) = 0 \\ sum([n|X]) &= n + sum(X) & len([n|X]) = 1 + len(X) \\ max([]) &= 0 \\ max([n|X]) &= n & \text{if } max(X) \leq n & (a) \\ max([n|X]) &= max(X) & \text{if } n < max(X) & (b) \end{split}$$

$$\begin{array}{ll} (1) \; sum([]) \leq max([]) * \mathit{len}([]) \\ 0 \leq 0 * 0 & applying \; definitions \end{array}$$

(2) assume
$$sum(\ell) \le max(\ell) * len(\ell)$$
 inductive hyp.
prove $sum([n|\ell]) \le max([n|\ell]) * len([n|\ell])$ for any $n \in \mathbb{N}$
(a) $n + sum(\ell) \le n * (1 + len(\ell))$ if $max(\ell) \le n$ applying definitions
 $sum(\ell) \le hyp \quad max(\ell) * len(\ell) \le (a) \quad n * len(\ell)$ QED
(b) $n + sum(\ell) \le max(\ell) + max(\ell) * len(\ell))$ if $n < max(\ell)$ applying definitions
 $A \le B$ and $C \le D$ imply $A + C \le B + D$ QED
F. Tiezzi (Unicam) FRS

13/28

Inference Systems

 I can be 	written a	as <u>t</u>	(for any $t \in$	1)				
$ R_i \text{ can be written as } \frac{p_1 \cdots p_n}{q} $								
Meaning:	<i>t</i> ar	nd if ⊢	$p_1,\ldots,\vdash p_n$	then	$\vdash q$			
Example: ratio	nal number	rs Q						
		$k \in N$		$k \in N,$	$h \in D$			
$0 \in N$		$k+1 \in N$		k/h				
A derivation:	$1\in$	$ \frac{N}{N} \frac{1 \in D}{2 \in D} $ $ \frac{1}{2 \in D} \frac{1}{2 \in D} $	$\vdash 1/2 \in 0$		Question: why do we need the rules in Red ?			

Inference Systems

• I can be written as t (for any $t \in I$)								
$ R_i \text{ can be written as } \frac{p_1 \cdots p_n}{q} $								
Meaning:	⊢t a	and if ⊦	$-p_1,\ldots,\vdash p_n$	then	⊢ q			
Example: rational numbers ${\mathbb Q}$								
		$k \in N$	$k \in D$	$k \in N$,	$h \in D$			
$\overline{0 \in N}$	$1 \in D$	$\overline{k+1\in N}$	$\overline{k+1\in D}$	k/h e	$\in \mathbb{Q}$			
A derivation:		$= N \frac{1 \in D}{2 \in D}$	$\vdash 1/2 \in 0$		Question: why do we need the rule			
	$1/2\in\mathbb{Q}$				in Red?			

Inference Systems

• I can be written as t (for any $t \in I$)							
$ R_i \text{ can be written as } \frac{p_1 \cdots p_n}{q} $							
Meaning:	$\vdash t$	and if	$\vdash p_1,\ldots,\vdash p_n$	then	$\vdash q$		
Example: rational numbers \mathbb{Q}							
		$k \in N$	$k \in D$	$k \in N$,	$h \in D$		
$\overline{0 \in N}$	$1\in D$	$k+1 \in I$	V $k+1 \in D$	k/h	$\in \mathbb{Q}$		
A derivation	: —	$\frac{\in N}{\in N} \frac{1 \in D}{2 \in D}$ $\frac{1/2 \in \mathbb{Q}}{1/2 \in \mathbb{Q}}$	$\vdash 1/2 \in 0$	Q	Question: why do we need the rules in Red?		

More on Inductively Defined Sets

•
$$S_{I,R} = \{x \mid \vdash x\}$$
 the set of all finitely derivable elements

•
$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$
 one step derivation

X is closed under R if $R(X) \subseteq X$ called a (pre-)fixed point

R is monotonic if $A \subseteq B \Rightarrow R(A) \subseteq R(B)$

$$S^{0} = R^{0}(\emptyset) = \emptyset$$

$$S^{1} = R^{1}(\emptyset) = R(\emptyset) \qquad S^{0} \subseteq S^{1} \subseteq S^{2} \subseteq \dots$$

$$S^{2} = R^{2}(\emptyset) = R(R(\emptyset))$$

$$\vdots$$

$$S \triangleq \bigcup_{i \in \mathbb{N}} S^{i} \qquad S \text{ closed under } R \quad R(S) = S \quad S \text{ least } R \text{-closed set}$$

More on Inductively Defined Sets

•
$$S_{I,R} = \{x \mid \vdash x\}$$
 the set of all finitely derivable elements

•
$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$
 one step derivation

X is closed under R if $R(X) \subseteq X$ called a (pre-)fixed point

R is monotonic if $A \subseteq B \Rightarrow R(A) \subseteq R(B)$

$$\begin{array}{rcl} S^{0} & = & R^{0}(\emptyset) & = & \emptyset \\ S^{1} & = & R^{1}(\emptyset) & = & R(\emptyset) \\ S^{2} & = & R^{2}(\emptyset) & = & R(R(\emptyset)) \\ & \vdots \\ S & \triangleq & \bigcup_{i \in \mathbb{N}} S^{i} \end{array} \qquad \boxed{ \begin{array}{c} S \text{ closed under } R & R(S) = S & S \text{ least } R \text{-closed set} \end{array} } \end{array}}$$

fib(0) = 0 fib(1) = 1fib(n+2) = fib(n+1) + fib(n)

 $\mathit{fib}:\mathbb{N} \to \mathbb{N}$

 $(n+1,a) \in Fib$ $(n,b) \in Fib$

 $(0,0)\in \mathit{Fib}$ $(1,1)\in \mathit{Fib}$

 $n+2, a+b) \in Fib$

$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$

one step derivation

$$\begin{array}{rcl} S^0 &=& \emptyset &=& \emptyset \\ S^1 &=& R(S^0) &=& \{(0,0),(1,1)\} \\ S^2 &=& R(S^1) &=& \{(0,0),(1,1),(2,1)\} \\ S^3 &=& R(S^2) &=& \{(0,0),(1,1),(2,1),(3,2)\} \\ S^4 &=& R(S^3) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\ S^5 &=& R(S^4) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\ S^6 &=& R(S^5) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ S^7 &=& R(S^6) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \\ \cdot \end{array}$$

 $S^0 \subseteq S^1 \subseteq S^2 \subseteq \ldots$

a sequence of partial functions (under-) approximating *fib*

$$\begin{aligned} fib(0) &= 0\\ fib(1) &= 1\\ fib(n+2) &= fib(n+1) + fib(n) \end{aligned} \qquad fib: \mathbb{N} \to \mathbb{N} \\ \hline \\ \hline \\ \hline \\ (0,0) &\in Fib \end{array} \qquad \hline \\ \hline \\ \hline \\ (1,1) &\in Fib \end{array} \qquad \hline \\ \hline \\ \hline \\ (n+1,a) &\in Fib \qquad (n,b) &\in Fib \\ \hline \\ \hline \\ (n+2,a+b) &\in Fib \end{aligned}$$

$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$

one step derivation

$$\begin{array}{rclrcl} S^0 &=& \emptyset &=& \emptyset \\ S^1 &=& R(S^0) &=& \{(0,0),(1,1)\} \\ S^2 &=& R(S^1) &=& \{(0,0),(1,1),(2,1)\} \\ S^3 &=& R(S^2) &=& \{(0,0),(1,1),(2,1),(3,2)\} \\ S^4 &=& R(S^3) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\ S^5 &=& R(S^4) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\ S^6 &=& R(S^5) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ S^7 &=& R(S^6) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ \cdot \end{array}$$

a sequence of partial functions (under-) approximating *fib*

$$\begin{aligned} & fib(0) = 0 \\ & fib(1) = 1 \\ & fib(n+2) = fib(n+1) + fib(n) \end{aligned} \qquad fib: \mathbb{N} \to \mathbb{N} \\ & \frac{1}{(0,0) \in Fib} \quad \frac{1}{(1,1) \in Fib} \quad \frac{(n+1,a) \in Fib \quad (n,b) \in Fib}{(n+2,a+b) \in Fib} \end{aligned}$$

$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$

one step derivation

$$\begin{array}{rcl} S^{0} &=& \emptyset &=& \emptyset \\ S^{1} &=& R(S^{0}) &=& \{(0,0),(1,1)\} \\ S^{2} &=& R(S^{1}) &=& \{(0,0),(1,1),(2,1)\} \\ S^{3} &=& R(S^{2}) &=& \{(0,0),(1,1),(2,1),(3,2)\} \\ S^{4} &=& R(S^{3}) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\ S^{5} &=& R(S^{4}) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\ S^{6} &=& R(S^{5}) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ S^{7} &=& R(S^{6}) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \\ &\cdot \end{array}$$

 $S^0 \subseteq S^1 \subseteq S^2 \subseteq \ldots$

a sequence of partial functions (under-) approximating fib

$$ib(0) = 0$$

$$ib(1) = 1$$

$$ib(n+2) = fib(n+1) + fib(n)$$

$$fib : \mathbb{N} \to \mathbb{N}$$

$$(n+1, a) \in Fib \quad (n, b) \in Fib$$

$$(n, b) \in Fib$$

$$(n+2, a+b) \in Fib$$

$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$

one step derivation

$$\begin{array}{rclrcl} S^0 &=& \emptyset &=& \emptyset \\ S^1 &=& R\{S^0\} &=& \{(0,0),(1,1)\} \\ S^2 &=& R(S^1) &=& \{(0,0),(1,1),(2,1)\} \\ S^3 &=& R(S^2) &=& \{(0,0),(1,1),(2,1),(3,2)\} \\ S^4 &=& R(S^3) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\ S^5 &=& R(S^4) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\ S^6 &=& R(S^5) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ S^7 &=& R(S^6) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \end{array}$$

 $S^0 \subseteq S^1 \subseteq S^2 \subseteq \dots$

a sequence of partial functions (under-) approximating fib

f f

$$ib(0) = 0$$

$$ib(1) = 1$$

$$ib(n+2) = fib(n+1) + fib(n)$$

$$fib : \mathbb{N} \to \mathbb{N}$$

$$(n+1, a) \in Fib \quad (n, b) \in Fib$$

$$(n, b) \in Fib$$

$$(n+2, a+b) \in Fib$$

$$R(X) = \{ y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X \}$$

one step derivation

$$\begin{array}{rclrcl} S^0 &=& \emptyset &=& \emptyset \\ S^1 &=& R(S^0) &=& \{(0,0),(1,1)\} \\ S^2 &=& R(S^1) &=& \{(0,0),(1,1),(2,1)\} \\ S^3 &=& R(S^2) &=& \{(0,0),(1,1),(2,1),(3,2)\} \\ S^4 &=& R(S^3) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3)\} \\ S^5 &=& R(S^4) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\} \\ S^6 &=& R(S^5) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\} \\ S^7 &=& R(S^6) &=& \{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\} \\ \end{array}$$

 $S^0 \subseteq S^1 \subseteq S^2 \subseteq \ldots$

a sequence of partial functions (under-) approximating fib

f f

$$ib(0) = 0$$

$$ib(1) = 1$$

$$ib(n+2) = fib(n+1) + fib(n)$$

$$fib : \mathbb{N} \to \mathbb{N}$$

$$(n+1, a) \in Fib \quad (n, b) \in Fib$$

$$(n+2, a+b) \in Fib$$

$$R(X) = \{y \mid \frac{x_1 \cdots x_n}{y} \text{ and } x_1, \dots, x_n \in X\}$$

one step derivation

 $S^0 \subseteq S^1 \subseteq S^2 \subseteq \ldots$

f f

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set $Strings(\Gamma)$ is inductively defined as follows:

- $I = \Gamma \cup \{\varepsilon\}$,
- R_1 : if $x, y \in Strings(\Gamma)$ then $xy \in Strings(\Gamma)$
- xy is the concatenation of the strings x and y ($\varepsilon x = x\varepsilon = x$)
- Notation: $\Gamma^* = Strings(\Gamma)$ (star closure of an alphabet)

An example

$$\Gamma = \{a, b\}, \quad Strings(\Gamma) = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

Languages

- A language on Γ is any subset $L \subseteq \Gamma^*$
- They can be defined inductively through formal grammars

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set *Strings*(Γ) is inductively defined as follows:

- $I = \Gamma \cup \{\varepsilon\}$,
- R_1 : if $x, y \in Strings(\Gamma)$ then $xy \in Strings(\Gamma)$
- xy is the concatenation of the strings x and y ($\varepsilon x = x\varepsilon = x$)
- Notation: $\Gamma^* = Strings(\Gamma)$ (star closure of an alphabet)

An example

$$\Gamma = \{a, b\}, \quad Strings(\Gamma) = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

Languages

- A language on Γ is any subset $L \subseteq \Gamma^*$
- They can be defined inductively through formal grammars

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set *Strings*(Γ) is inductively defined as follows:

- $I = \Gamma \cup \{\varepsilon\}$,
- R_1 : if $x, y \in Strings(\Gamma)$ then $xy \in Strings(\Gamma)$
- xy is the concatenation of the strings x and y ($\varepsilon x = x\varepsilon = x$)
- Notation: $\Gamma^* = Strings(\Gamma)$ (star closure of an alphabet)

An example

$$\Gamma = \{a, b\}, \quad Strings(\Gamma) = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

Languages

- A language on Γ is any subset $L \subseteq \Gamma^*$
- They can be defined inductively through formal grammars

Grammars

A grammar is a 4-tuple $G = \langle T, NT, S, P \rangle$ where

- terminals
- **2** nonterminals NT $(T \cap NT = \emptyset)$
- **3** start symbol $S \in NT$
- productions $P \subseteq (T \cup NT)^* \times (T \cup NT)^*$

if $(u, v) \in P$ then u has at least a nonterminal symbol

Grammars

A grammar is a 4-tuple $G = \langle T, NT, S, P \rangle$ where

- terminals
- **2** nonterminals NT $(T \cap NT = \emptyset)$
- **3** start symbol $S \in NT$
- productions $P \subseteq (T \cup NT)^* \times (T \cup NT)^*$

if $(u, v) \in P$ then u has at least a nonterminal symbol

(u, v) is also written as $u \rightarrow v$

Grammars

A grammar is a 4-tuple $G = \langle T, NT, S, P \rangle$ where

- terminals
- **2** nonterminals NT $(T \cap NT = \emptyset)$
- **3** start symbol $S \in NT$
- productions $P \subseteq (T \cup NT)^* \times (T \cup NT)^*$

if $(u, v) \in P$ then u has at least a nonterminal symbol

(u, v) is also written as $u \rightarrow v$

$$(u, v_1), (u, v_2), \dots, (u, v_n) \in P$$
 also written as
 $u \rightarrow v_1 \mid v_2 \mid \dots \mid v_n$
or

 $u ::= v_1 | v_2 | \dots | v_n$ Backus-Naur Normal Form (BNF)

Grammars - derivation relation

 $G = \langle T, N, S, P \rangle$

$$\frac{s = lur}{s \Rightarrow t} \quad t = lvr \quad u \to v$$

for any production $u \rightarrow v$ in P

 \Rightarrow^* is the reflexive and transitive closure of \Rightarrow

Grammars and Languages

The language generated by G is the following set of string of terminal symbols

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

A derivation:

<u>S</u>

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

A derivation:

 $\underline{S} \Rightarrow aB\underline{S}c$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

A derivation:

 $\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

A derivation:

 $\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc \Rightarrow$$
$$\Rightarrow aaBBabccc$$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

A derivation:

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc \Rightarrow$$

 $\Rightarrow aaB\underline{Ba}bccc \Rightarrow aa\underline{Ba}Bbccc$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{B}aBabccc \Rightarrow$$
$$\Rightarrow aaB\underline{B}abccc \Rightarrow aa\underline{B}aBbccc \Rightarrow aaaB\underline{B}bccc$$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc \Rightarrow$$
$$\Rightarrow aaB\underline{Ba}bccc \Rightarrow aa\underline{Ba}Bbccc \Rightarrow aaaB\underline{Bb}ccc \Rightarrow$$
$$\Rightarrow aaa\underline{Bb}bccc$$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc \Rightarrow$$
$$\Rightarrow aaB\underline{Ba}bccc \Rightarrow aa\underline{Ba}Bbccc \Rightarrow aaaB\underline{Bb}ccc \Rightarrow$$
$$\Rightarrow aaa\underline{Bb}bccc \Rightarrow aaabbbccc \in \{a, b, c\}^*$$

$$T = \{a, b, c\}$$
 $NT = \{S, B\}$ start symbol: S

 $S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$

$$\underline{S} \Rightarrow aB\underline{S}c \Rightarrow aBaB\underline{S}cc \Rightarrow a\underline{Ba}Babccc \Rightarrow$$
$$\Rightarrow aaB\underline{Ba}bccc \Rightarrow aa\underline{Ba}Bbccc \Rightarrow aaaB\underline{Bb}ccc \Rightarrow$$
$$\Rightarrow aaa\underline{Bb}bccc \Rightarrow aaabbbccc \in \{a, b, c\}^*$$

$$L(G) = \{a^n b^n c^n \mid n \ge 1\}$$

Abstract and Concrete Syntax

When providing the syntax of programming languages we need to worry about precedence of operators or grouping of statements to distinguish, e.g., between:

(3+4)*5 and 3+(4*5),

while p do $(c_1; c_2)$ and (while p do c_1); c_2

Thus, e.g., for arithmetic expressions we have grammars with parenthesis:

$$E \quad ::= \quad n \mid (E) \mid E + E \mid E - E \mid E * E \mid E/E$$

or more elaborate grammars specifying the precedence of operators (like the next one \ldots)

Abstract and Concrete Syntax

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job of concrete syntax to provide enough information through parentheses or precedence rules for a string to parse uniquely

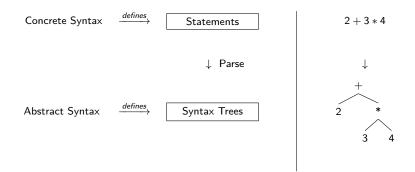
Abstract and Concrete Syntax

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way

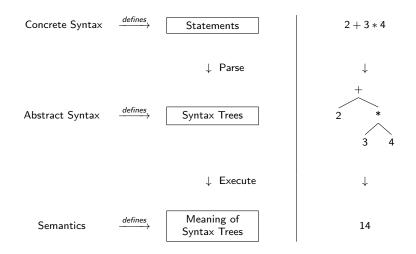
Abstract syntax specifies the parse trees of a language; it is the job of concrete syntax to provide enough information through parentheses or precedence rules for a string to parse uniquely

From Parsing to Execution

From Parsing to Execution



From Parsing to Execution



Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\langle Q,A,
ightarrow,q_0
angle$ such that

- states Q
- **2** actions A
- $I transitions \quad \rightarrow \subseteq Q \times A \times Q$

$$q \stackrel{a}{\longrightarrow} q'$$
 denotes $(q,a,q') \! \in \!
ightarrow$

(a) initial state $q_0 \in Q$

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\langle Q,A,
ightarrow,q_0
angle$ such that

 Image: states
 Q

 Image: states
 Q

 Image: states
 A

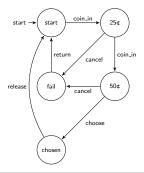
 Image: states
 $A = Q \times A \times Q$

 Image: states
 $q = Q \times A \times Q$

 Image: states
 $q = Q \times A \times Q$

 Image: state
 $q_0 \in Q$

Vending machine:



Labelled Transition Systems

A labelled transition system is a 4-tuple $S = \langle Q, A,
ightarrow, q_0
angle$ such that

- Image: states
 Q

 Image: states
 Q

 Image: states
 A

 Image: states
 Vendia

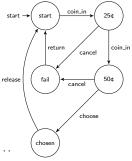
 Image: state
 Vendia

 Image: state
 Image: state

 Image: state
 Image: state
 - τ : $a_0 a_1 a_2 a_3 a_4 a_5 a_6 \dots$

 τ : coin_in cancel return coin_in coin_in choose release \ldots

Vending machine:



LTS-based Semantics of Arithmetic Expressions

$$\frac{m \circ n = k}{m \circ n \xrightarrow{\circ} k} \quad \text{(op)} \qquad \frac{E_1 \xrightarrow{\circ'} E'_1}{E_1 \circ E_2 \xrightarrow{\circ'} E'_1 \circ E_2} \quad \text{(rl)} \qquad \frac{E_2 \xrightarrow{\circ'} E'_2}{E_1 \circ E_2 \xrightarrow{\circ'} E_1 \circ E'_2} \quad \text{(rr)}$$

LTS-based Semantics of Arithmetic Expressions

$$\frac{m \circ n = k}{m \circ n \xrightarrow{\circ} k} \quad \text{(op)} \qquad \frac{E_1 \xrightarrow{\circ'} E'_1}{E_1 \circ E_2 \xrightarrow{\circ'} E'_1 \circ E_2} \quad \text{(rl)} \qquad \frac{E_2 \xrightarrow{\circ'} E'_2}{E_1 \circ E_2 \xrightarrow{\circ'} E_1 \circ E'_2} \quad \text{(rr)}$$

$$(4+(7*3))/(6-1) \xrightarrow{*} (4+21)/(6-1) \xrightarrow{+} 25/(6-1) \xrightarrow{-} 25/5 \xrightarrow{/} 5$$

LTS-based Semantics of Arithmetic Expressions

$$\frac{m \circ n = k}{m \circ n \xrightarrow{\circ} k} \quad \text{(op)} \qquad \frac{E_1 \xrightarrow{\circ'} E_1'}{E_1 \circ E_2 \xrightarrow{\circ'} E_1' \circ E_2} \quad \text{(rl)} \qquad \frac{E_2 \xrightarrow{\circ'} E_2'}{E_1 \circ E_2 \xrightarrow{\circ'} E_1 \circ E_2'} \quad \text{(rr)}$$

$$(4+(7*3))/(6-1) \xrightarrow{*} (4+21)/(6-1) \xrightarrow{+} 25/(6-1) \xrightarrow{-} 25/5 \xrightarrow{/} 5$$

$$\frac{7 * 3 = 21}{7 * 3 \xrightarrow{*} 21} \qquad \qquad \frac{4 + 21 = 25}{4 + 21 \xrightarrow{+} 25} \qquad \text{similarly for - and /} \\ \frac{4 + (7 * 3))/(6 - 1) \xrightarrow{*} (4 + 21)/(6 - 1)}{(4 + 21)/(6 - 1) \xrightarrow{+} 25/(6 - 1)}$$

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple $M = \langle Q, \Gamma, \rightarrow, q_0, F \rangle$ s.t.

- **1** states *Q* finite !
- ❷ alphabet □

 $q \stackrel{a}{\longrightarrow} q'$ denotes $(q,a,q') \!\in\!
ightarrow$

- (a) initial state $q_0 \in Q$
- **(a)** accepting states $F \subseteq Q$

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple $M = \langle Q, \Gamma, \rightarrow, q_0, F \rangle$ s.t.

- **1** states *Q* finite !
- ❷ alphabet

 $q \stackrel{a}{\longrightarrow} q'$ denotes $(q,a,q') \!\in\!
ightarrow$

- (a) initial state $q_0 \in Q$
- **(a)** accepting states $F \subseteq Q$

$$p \xrightarrow{w} q$$
 iff $p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} p_n = q$ $w = a_1 \cdots a_n$

Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple $M = \langle Q, \Gamma, \rightarrow, q_0, F \rangle$ s.t.

- **1** states *Q* finite !
- ❷ alphabet □

 $q \stackrel{a}{\longrightarrow} q'$ denotes $(q, a, q') \in \,
ightarrow$

(a) initial state $q_0 \in Q$

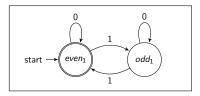
(a) accepting states $F \subseteq Q$

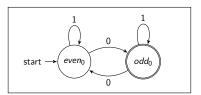
$$p \stackrel{w}{\Longrightarrow} q \quad \text{iff} \quad p \stackrel{a_1}{\longrightarrow} p_1 \stackrel{a_2}{\longrightarrow} \dots \stackrel{a_n}{\longrightarrow} p_n = q \quad w = a_1 \cdots a_n$$

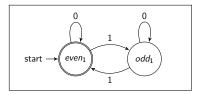
Semantics of Finite State Automata

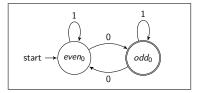
The language accepted by a Finite State Automata is the set:

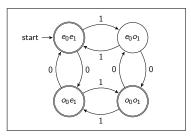
$$L(M) = \{ w \in \Gamma^* \mid q_0 \stackrel{w}{\Longrightarrow} q \text{ and } q \in F \}$$



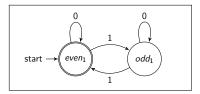


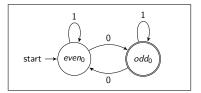




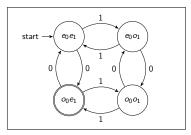


 $L(A_1) \cup L(A_2)$



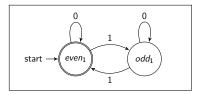


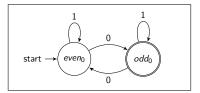
 $L(A_1) = \{w \mid \text{even number of } 1's\}$ $L(A_2) = \{w \mid \text{odd number of } 0's\}$



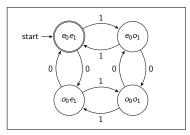
 $L(A_1) \cap L(A_2)$

F. Tiezzi (Unicam)



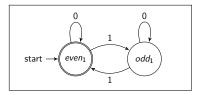


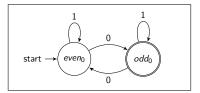
 $L(A_1) = \{w \mid \text{even number of } 1's\}$ $L(A_2) = \{w \mid \text{odd number of } 0's\}$



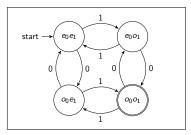
 $L(A_1) \setminus L(A_2)$

F. Tiezzi (Unicam)



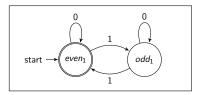


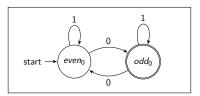
 $L(A_1) = \{w \mid \text{even number of } 1's\}$ $L(A_2) = \{w \mid \text{odd number of } 0's\}$



$$L(A_2) \setminus L(A_1)$$

F. Tiezzi (Unicam)





 $L(A_1) = \{w \mid \text{even number of } 1's\}$ $L(A_2) = \{w \mid \text{odd number of } 0's\}$

. . .

regular languages are closed w.r.t. the operations of \cap , \cup , \setminus , complement, reversal, concatenation, star closure,

Regular Languages

Chomsky Hierarchy	Grammar Restriction	Language	Abstract Machine
Туре 0	unrestricted	recursively enumerable	Turing machines
Type 1	$\alpha \mathbf{A}\beta \rightarrow \alpha \gamma \beta$	context sensitive	linear bounded automata
Type 2	$A \rightarrow \gamma$	context free	nondeterministic pushdown automata
Туре 3	A ightarrow a $A ightarrow aB$	regular	finite state automata
with $A,\;B\in NT$, and $a\in T$ and $lpha,\;eta,\;\gamma\in(T\cupNT)^*$			