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N
Set Notation

A C B every element of Ais in B

A C B if AC B and there is one element of B not in A

ACBand BC AimpliesA=B
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N
Set Notation

A C B every element of Ais in B
A C B if AC B and there is one element of B not in A

ACBand BC AimpliesA=B

AUB={x|x€AorxeB} (Uies A1)
ANB={x|xe€Aand x € B} (Nier Ai)
A\B={x|xe€Aand x ¢ B}

Ax B={(a,b)|ac Aand b€ B} ordered pairs (X, A)
A ={X| X CA} powerset
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Relations

R C A x B is a relation on sets A and B (RC x1,A)
(a,b)€eR = R(a,b) = aRb  notation
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Relations

R C A x B is a relation on sets A and B (RC x1,A)
(a,b)€eR = R(a,b) = aRb  notation

lda ={(a,a) | acA} (identity)
RY={(y,x) | (x,y)ER}CBxA (inverse)
Ri-Ro={(x,z)]| JyeB. (x,y)€R A (y,z)€R} CAx C (composition)

Some basic constructions:

RO = Ida
Rn+1 — R-R"
R* — Unzo R
R+ = UnZl R"

Note that: R!=R-R°=R, R* = ldy URt and

RT ={(x,y)| 3n,3x1,...,x, with x;Rx;41 (1<i<n—-1), xq=x, x, =y}
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Properties of Relations

Binary Relations

A binary relation RC A X Ais (same set A)
reflexive: if Vx € A (x,x) € R,
symmetric: if Vx,y € A (x,¥) € R= (y,x) € R,
antisymmetric: if Vx,y € A, (x,¥) € R A (y,x) € R=x=y;
transitive: if Vx,y,z € A (x,¥) € R A (y,2) € R= (x,2)€R

4/28
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Properties of Relations

Binary Relations
A binary relation RC AXx A is

(same set A)

reflexive: if Vx € A (x,x) € R,

symmetric: if Vx,y € A (x,¥) € R= (y,x) € R,
antisymmetric: if Vx,y € A, (x,¥) € R A (y,x) € R=x=y;
transitive: if Vx,y,z € A (x,¥) € R A (y,2) € R= (x,2)€R

Closure of Relations

S=RUlds
S=RUR!
S=Rt
S =R*

the reflexive closure of R
the symmetric closure of R
the transitive closure of R

the reflexive and transitive closure of R |
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Special Relations

A relation R is
@ an order if it is reflexive, antisymmetric and transitive

@ an equivalence if it is reflexive, symmetric and transitive

@ a preorder if it is reflexive and transitive
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Special Relations

A relation R is
@ an order if it is reflexive, antisymmetric and transitive

@ an equivalence if it is reflexive, symmetric and transitive

@ a preorder if it is reflexive and transitive

Examples
@ orders: less-than-or-equal-to (<) on R, set inclusion (C),. ..

@ equivalences: equal-to (=) on R, congruent-mod-n, ...

@ preorders: reachability in directed graphs, some subtyping,. ..
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Special Relations

A relation R is
@ an order if it is reflexive, antisymmetric and transitive
@ an equivalence if it is reflexive, symmetric and transitive

@ a preorder if it is reflexive and transitive

Examples
@ orders: less-than-or-equal-to (<) on R, set inclusion (C),. ..

@ equivalences: equal-to (=) on R, congruent-mod-n, ...

@ preorders: reachability in directed graphs, some subtyping,. ..

Kernel relation

@ Given a preorder R its kernel, defined as K = RN R™!, is an
equivalence relation
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Equivalence Classes and Quotient Set

Examples of equivalence relations: R C A x A (reflexive, symmetric,
transitive)

Example: R ={(x,y) € NxN | (x =y) mod 3}
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Equivalence Classes and Quotient Set

Examples of equivalence relations: R C A x A (reflexive, symmetric,
transitive)

Example: R ={(x,y) € NxN | (x =y) mod 3}
R(7.7),
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Equivalence Classes and Quotient Set

Examples of equivalence relations: R C A x A (reflexive, symmetric,
transitive)

Example: R ={(x,y) € NxN | (x =y) mod 3}

R(7,7), R(7,1), R(1,7), R(7,10), R(1,10) , ...

[0] ={0,3,6,9,...} equivalence classes:
1] ={1,4,7,10,...} - have a representative
[2] ={2,5,8,11,...} - are disjoint
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Equivalence Classes and Quotient Set

Examples of equivalence relations: R C A x A (reflexive, symmetric,
transitive)
Example: R ={(x,y) € NxN | (x =y) mod 3}

R(7,7), R(7,1), R(1,7), R(7,10), R(1,10) , ...

[0] ={0,3,6,9,...} equivalence classes:

1] ={1,4,7,10,...} - have a representative
[2] ={2,5,8,11,...} - are disjoint

An equivalence class is a subset C of A such that

x,yeC = (x,y)€ R consistent and
xeC A (x,y)eR = yecC saturated
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Equivalence Classes and Quotient Set

Examples of equivalence relations: R C A x A (reflexive, symmetric,
transitive)
Example: R ={(x,y) € NxN | (x=y) mod 3}
R(7,7), R(7,1), R(1,7), R(7,10), R(1,10) , ...
[0] = {0,3,6,9,...}
[1] ={1,4,7,10,...}
[2] = {2,5,8,11,...}

equivalence classes:
- have a representative
- are disjoint

The quotient set QF of A modulo R

is a partition of A
is the set of equivalence classes induced by R on A

Example: R={(x,y) e NxN | (x=y) mod 3}
QFf = {[0], 1], [2I}
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Functions

Partial Functions
A partial function is a relation f C A x B such that

Vx,y,z. (x,y)Ef A (x,2)Ef =>y==z2

We denote partial function by f:A—B
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Functions

Partial Functions
A partial function is a relation f C A x B such that
Vx,y,z. (x,y)ef A (x,2)Ef =y=12z

We denote partial function by f:A—B

Total Functions

A (total) function is a partial function f: A — B such that

Vx Jy. (x,y)ef

We denote total function by f:A—>B
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Functions

Partial Functions
A partial function is a relation f C A x B such that
Vx,y,z. (x,y)ef A (x,2)Ef =y=12z

We denote partial function by f:A—B

Total Functions

A (total) function is a partial function f: A — B such that
Vx Jy. (x,y)ef

We denote total function by f:A—>B

Functions (total or partial) can be monotone, continuous, injective,
surjective, bijective, invertible...
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Induction Principle

Mathematical Induction

To prove that P(n) holds for every natural number n € N, prove

Q@ P(0)
@ for any k € N, P(k) implies P(k + 1)
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Mathematical Induction

To prove that P(n) holds for every natural number n € N, prove

Q@ P(0)
@ for any k € N, P(k) implies P(k + 1)

Example: Show that sum(n) =7 i = "("2“) for every n € N
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Induction Principle

Mathematical Induction
To prove that P(n) holds for every natural number n € N, prove

Q@ P(0)
@ for any k € N, P(k) implies P(k + 1)
Example: Show that sum(n) =7 i = "("2“) for every n € N
(1) sum(0) = % =0 base case
(2) to show: 27, i = M implies S0t = (rHL(nE2)
assume sum(n) = ™ "H , for a generic n
sum(n+1) = sum(n) +(n+1)= properties of summation
= n "H +(n+1) inductive hypothesis
(n+1)(n+2) qed

- 2
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-
Playful digression

Some “advanced” proof methods

@ Proof by obviousness: So evident it need not to be mentioned
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Playful digression

Some “advanced” proof methods

@ Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

00000

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)
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Playful digression

Some “advanced” proof methods

@ Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

Proof by logic: It is on the textbook, hence it must be true

© 00000O0C
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-
Playful digression

Some “advanced” proof methods

@ Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

Proof by logic: It is on the textbook, hence it must be true
@ Proof by intimidation: Who is saying that it is false!?

© 00000O0C
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Playful digression

Some “advanced” proof methods

@ Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

Proof by logic: It is on the textbook, hence it must be true
@ Proof by intimidation: Who is saying that it is false!?
@ Proof by authority: Don Knuth said it was true

© 00000O0C
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Playful digression

Some “advanced” proof methods

o

600 000000

Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

Proof by logic: It is on the textbook, hence it must be true
Proof by intimidation: Who is saying that it is false!?
Proof by authority: Don Knuth said it was true

Proof by deception: Everybody please turn their backs. . .
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Playful digression

Some “advanced” proof methods

o

PeE600 000000

Proof by obviousness: So evident it need not to be mentioned
Proof by general agreement: All in favor?

Proof by majority: When general agreement fails

Proof by plausibility: It sounds good

Proof by intuition: | have this feeling. ..

Proof by lost reference: | saw it somewhere

Proof by obscure reference: It appeared in the Annals of Polish
Math. Soc. (1854, in polish)

Proof by logic: It is on the textbook, hence it must be true
Proof by intimidation: Who is saying that it is false!?
Proof by authority: Don Knuth said it was true

Proof by deception: Everybody please turn their backs. . .
Proof by divine word: Lord said let it be true

F. Tiezzi (Unicam) FRS
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-
Inductively Defined Sets

basis: the set / of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing / and closed w.r.t. R
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Natural numbers
I ={0}, Ri: if X €S thens(X)eS
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induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing / and closed w.r.t. R

Natural numbers
I ={0}, Ri: if X €S thens(X)eS

S =10,s(0),s(s(0)),...}

S = Lists(N), lists of numbers in N
I={[1}, Ru: ifX€Sand neNthen[nX] €S

S ={[1,0],[11,[2],---,[0,0],[0,1],[0,2],...,[1,0],[1,1],[1,2],...}
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Inductively Defined Sets

basis: the set / of initial elements of S
induction: rules R for constructing elements in S from elements in S
closure: S is the least set containing / and closed w.r.t. R

Natural numbers
I ={0}, Ri: if X €S thens(X)eS

S =10,s(0),s(s(0)),...}

S = Lists(N), lists of numbers in N
I={[1}, Ru: ifX€Sand neNthen[nX] €S

S ={[1,0],[11,[2],---,[0,0],[0,1],[0,2],...,[1,0],[1,1],[1,2],...}

n-ary trees

I:{E}, R : ile,...,XnGSthent(Xl,...,X,,)ES
S = {e, tle), tle,8), - . . , (), - - ., e, E(H(2), €) 2, 25 8)); - - ]
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Structural Induction

Let us consider a set S inductively defined by a set
C ={a,...,cn} of constructors of arity {ai,...,an} with

o | ={ci()|ai=0}

o Ri: if Xi,...,X;, €S then ¢(Xi,...,X;)€S
To prove that P(x) holds for every x € S, it is sufficient to prove
that

@ for every constructor ¢, € C and

o for every si,...,s, € S, where k is the arity of ¢

P(s1),...,P(sx) = P(ck(s1,---,5«)) J

Notice that the base case is the one dealing with constructors of arity 0
i.e. with constants

F. Tiezzi (Unicam) FRS 11/28



Structural Induction: example

Prove that sum(¢) < max(¢) = len(¢), for every ¢ € Lists(N)
where
@ sum(?) is the sum of the elements in the list ¢

@ max({) is the greatest element in ¢ (with max([]) = 0)

@ len(?) is the number of elements in ¢
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Structural Induction: example

Exercise: prove sum({) < max(£) * len(¢), for every £ € Lists(N)

sum([]) =0 len([]) =0

sum([n|X]) = n+ sum(X)  len([n|X]) = 1 + len(X)
max([) = 0

max([n|X]) =n if max(X)<n
max([n|X]) = max(X) if n < max(X)
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max([) = 0
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(1) sum([1) < max([]) = len([])

0<0=x0 applying definitions
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Structural Induction: example

Exercise: prove sum({) < max(£) * len(¢), for every £ € Lists(N)

sum([]) =0 len([]) =0

sum([n|X]) = n+ sum(X)  len([n|X]) = 1 + len(X)
max([) = 0

max([n|X]) =n if max(X)<n
max([n|X]) = max(X) if n < max(X)

(1) sum([1) < max([]) = len([])

0<0=x0 applying definitions
(2) assume sum(€) < max(¥) * len(¢) inductive hyp.
prove sum([n|€]) < max([n|€]) = len([n|¢]) for any n € N
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Structural Induction: example

Exercise: prove sum({) < max(£) * len(¢), for every £ € Lists(N)

sum([]) = 0 Jen([]) = 0

sum([n|X]) = n+ sum(X)  len([n|X]) = 1 + len(X)
max([) = 0

max([n|X]) =n if max(X)<n (a)
max([n|X]) = max(X) if n < max(X)

(1) sum([1) < max([]) = len([])

0<0=x0 applying definitions

(2) assume sum(€) < max(¥) * len(¢) inductive hyp.
prove sum([n|€]) < max([n|€]) = len([n|¢]) for any n € N

(@) n+ sum(£) < nx (1 + len(¢)) if max(¢) < n applying definitions

sum(£)  <pyp, max(€)xlen(€) <) nxlen(l) QED
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Structural Induction: example

Exercise: prove sum({) < max(£) * len(¢), for every £ € Lists(N)

sum([]) =0 len([]) =0

sum([n|X]) = n+ sum(X)  len([n|X]) = 1 + len(X)
max([]) = 0

max([n|X]) =n if max(X)<n (a)
max([n|X]) = max(X) if n < max(X) (b)

(1) sum([1) < max([]) = len([])

0<0=x0 applying definitions

(2) assume sum(€) < max(¥) * len(¢)
prove sum([n|€]) < max([n|€]) = len([n|¢]) for any n € N
(@) n+ sum(£) < nx (1 + len(¢))

sum(£)  <pyp, max(€)xlen(€) <) nxlen(l)

(b) n+ sum(£) < max(£) + max(€) x len(£))  if n < max(£) applying definitions

A<B and C<D impy A+C<B+D
rs

inductive hyp.

if max(¢) < n applying definitions
QED

QED

13 /28



Inference Systems

@ / can be written as

(for any tel)
t

PL - Pn

q
Meaning: Ft and if Fp1,...,kp, then Fg

@ R; can be written as
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Inference Systems

@ / can be written as (for any tel)

t

PL - Pn

q
Meaning: Ft and if Fp1,...,kp, then Fg

@ R; can be written as

Example: rational numbers Q

ke N ke D ke N, heD

0eN 1D k+1eN k+1eD k/heQ
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Inference Systems

@ / can be written as

(for any tel)
t

PL - Pn

q
Meaning: ¢t and if Fp1,....kp, then kg

@ R; can be written as

Example: rational numbers Q

ke N ke D keN, heD
06N 1eD k+1eN k+1eD k/heQ
0eEN 1€eD Question:
A derivation: ‘ F1/2€Q ‘ uestion:
why do we

leN 2e€D
- need the rules

1/2€Q in Red?
FRS T
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More on Inductively Defined Sets

o S r={x]| Fx} the set of all finitely derivable elements
X1 Xp
o R(X)={y|———andxy,...x,€X}  one step derivation
y
X is closed under R if R(X)C X called a (pre-)fixed point

R is monotonic if ACB = R(A)CR(B)
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More on Inductively Defined Sets

o S r={x]| Fx} the set of all finitely derivable elements
X1t Xp
o R(X)={y|———andxy,...x,€X}  one step derivation
y
X is closed under R if R(X)C X called a (pre-)fixed point

R is monotonic if ACB = R(A)CR(B)

S = RD) = 0

St = RY0) = R(0) sPcstcsic...

S$2 = R%(D) = R(R(0))

s 2 Uien S S closed under R R(S)=S S least R-closed set
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Constructing Inductively Defined Sets — an example
fib(0) = 0

fib(1) = 1 fib: N = N
fib(n + 2) = fib(n + 1) + fib(n)
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Constructing Inductively Defined Sets — an example
fib(0) = 0
fib(1) = 1 fib: N — N
fib(n + 2) = fib(n + 1) + fib(n)

(n+1,a) € Fib (n,b) € Fib

(0,0) € Fib (1,1) € Fib (n+2,a+b) € Fib
X1+ Xp
R(X)={y | ——and x1,...xn € X} one step derivation
y
O = 9 = 0
st = R(SY) = {(0,0),(1,1)}
$2 = R(sYH = {(0,0),(1,1),(2, 1)}
$ = RS = {0,0),(1,1),(2,1), 32}
st o= RS = {0,0,(1,1),(2,1),3,2),43)}
5 = R(sY = {(0,0),(1,1),(2,1), (3,2), (4,3),(5,5)}
8 = R(sY) = {(0,0),(1,1),(2,1),(3,2), (4,3),(5,5), (6,8)}
s = R(s% = {(0,0),(1,1),(2,1),(3,2), (4 3), (5,5), (6,8), (7, 13)}

a sequence of partial functions (under-) approximating fib
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(n+1,a) € Fib (n,b) € Fib

(0,0) € Fib (1,1) € Fib (n+2,a+b) € Fib

X| ottt Xn

R(X)={y | ——and x1,...xn € X} one step derivation
y

s = 9 = 0
st = R(SY) = {(0,0),(1,1)}
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fib(0) = 0
fib(1) = 1 fib: N — N
fib(n + 2) = fib(n + 1) + fib(n)

(n+1,a) € Fib (n,b) € Fib

(0,0) € Fib (1,1) € Fib (n+2,a+b) € Fib

X| ottt Xn

R(X)={y | ——and x1,...xn € X} one step derivation
y
s = 9 = 0
st = R(SY) = {(0,0),(1,1)}
$2 = R(sYH = {(0,0),(1,1),(2, 1)}
$ = RS = {0,0),(1,1),(21),3,2)}
st = RS = {(0,0),(1,1),(2,1),(3,2), (4,3)}
S = RSYH = {(0,0),(1,1),(21),32),(43),(55)} ” Sdcslcs?c... H
8 = R(sY) = {(0,0),(1,1),(2,1),(3,2), (4,3),(5,5), (6,8)}
s = R(s% = {(0,0),(1,1),(2,1),(3,2), (4 3), (5,5), (6,8), (7, 13)}
a sequence of partial functions (under-) approximating fib

S 2 UenS this limit is exactly the (total) function fib
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|
Languages
Strings over an alphabet

Let I' be an alphabet (a finite nonempty set of symbols).
The set Strings(I") is inductively defined as follows:

o I =TU{e},
e Ry: if x,yeStrings(l) then xy & Strings(I')
@ xy is the concatenation of the strings x and y (ex = xe = x)

e Notation: [* = Strings(I')  (star closure of an alphabet)

v
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@ xy is the concatenation of the strings x and y (ex = xe = x)
e Notation: [* = Strings(I')  (star closure of an alphabet)
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An example

I={a, b}, Strings(I') ={e,a, b, aa, ab, ba, bb, aaa, ...}

F. Tiezzi (Unicam) FRS 17 /28



|
Languages
Strings over an alphabet

Let I' be an alphabet (a finite nonempty set of symbols).
The set Strings(I") is inductively defined as follows:

o I =TU{e},

e Ry: if x,yeStrings(l) then xy & Strings(I')

@ xy is the concatenation of the strings x and y (ex = xe = x)
e Notation: [* = Strings(I')  (star closure of an alphabet)

An example
I={a, b}, Strings(I') ={e,a, b, aa, ab, ba, bb, aaa, ...}

Languages
@ A language on [ is any subset L C I*

@ They can be defined inductively through formal grammars

F. Tiezzi (Unicam) FRS 17 /28



Grammars

A grammar is a 4-tuple G = (T, NT, S, P) where

© terminals T
@ nonterminals NT (TANT =10)
© start symbol Se NT
© productions PC(TUNT)* x(TUNT)*
if (u,v) € P then u has at least a nonterminal symbol
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Grammars

A grammar is a 4-tuple G = (T, NT, S, P) where
© terminals T
@ nonterminals NT (TANT =10)
© start symbol Se NT

© productions PC(TUNT)* x(TUNT)*
if (u,v) € P then u has at least a nonterminal symbol

(u, v) is also written as u — v

(u,v1), (u,v2),...,(u,v,) € P also written as
u—vi|val...| vy
or
us=vi|val... | vy Backus-Naur Normal Form (BNF)

F. Tiezzi (Unicam) FRS 18 /28



Grammars — derivation relation

G=(T,N,S,P)

s=lur t=lvr u—v ) )
for any production v — v in P

s=t

="* is the reflexive and transitive closure of =

Grammars and Languages

The language generated by G is the following set of string of
terminal symbols

L(G)={weT"| S="w}

F. Tiezzi (Unicam) FRS 19/28



Grammars — example

T ={a,b,c} NT ={S,B} start symbol: S

S — aBSc | abc Ba — aB Bb — bb
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T ={a,b,c} NT ={S,B} start symbol: S
S — aBSc | abc Ba — aB Bb — bb

A derivation:
S = aBSc = aBaBScc = aBaBabccc =
= aaBBabccc = aaBaBbccc = aaaBBbccc =

= aaaBbbccc = aaabbbccc € {a, b, c}*
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Grammars — example

T ={a,b,c} NT ={S,B} start symbol: S
S — aBSc | abc Ba — aB Bb — bb

A derivation:

S = aBSc = aBaBScc = aBaBabccc =
= aaBBabccc = aaBaBbccc = aaaBBbccc =

= aaaBbbccc = aaabbbccc € {a, b, c}*

L(G) ={a"b"c" | n>1}

20/28
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Abstract and Concrete Syntax

When providing the syntax of programming languages we need to
worry about precedence of operators or grouping of statements to
distinguish, e.g., between:

(3+4)«x5 and 34 (4x%5),

while p do (c1;¢2) and (while p do ¢);

Thus, e.g., for arithmetic expressions we have grammars with
parenthesis:

E == n| (E)| E+E | E-E | ExE | E/E

or more elaborate grammars specifying the precedence of operators
(like the next one ...)

F. Tiezzi (Unicam) FRS 21/28



-
Abstract and Concrete Syntax

E = E+T | E-T | T (expressions)

T :=Tx«xP | T/P| P (terms)

P = N | (E) (atomic expressions)
N == DN | D (numbers)

D = 0[1[2[3[4]5]6]7]8]9 (digits)

@ When defining the semantics of programming languages, we
are only concerned with the meaning of their constructs, not
with the theory of how to write programs

@ We thus resort to abstract syntax that leaves us the task of
adding enough parentheses to programs to ensure they can be
built-up in a unique way
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Abstract and Concrete Syntax

E = E+T | E-T | T (expressions)

T :=Tx«xP | T/P| P (terms)

P = N | (E) (atomic expressions)
N == DN | D (numbers)

D = 0[1[2[3[4]5]6]7]8]9 (digits)

@ When defining the semantics of programming languages, we
are only concerned with the meaning of their constructs, not
with the theory of how to write programs

@ We thus resort to abstract syntax that leaves us the task of
adding enough parentheses to programs to ensure they can be
built-up in a unique way

Abstract syntax specifies the parse trees of a language; it is the job
of concrete syntax to provide enough information through

parentheses or precedence rules for a string to parse uniquely
F. Tiezzi (Unicam) FRS 22/28




From Parsing to Execution

defi
Concrete Syntax =~ ——— Statements 2+3x4
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From Parsing to Execution

defi
Concrete Syntax =~ ——— Statements 2+3x4

J Parse N
+
defines /\
Abstract Syntax ~—— 2 *
N
3 4
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From Parsing to Execution

defines
Concrete Syntax

defi
Abstract Syntax =~ ——

. defines
Semantics

F. Tiezzi (Unicam)

Statements

J Parse

l Execute

Meaning of
Syntax Trees

FRS

243x4

14
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Labelled Transition Systems

A labelled transition system is a 4-tuple S = (Q, A, —, qo) such

that
@ states Q
@ actions A

@ transitions — C QR X AXxXQ
g - ¢ denotes (g,a,¢') € —

Q initial state gp € Q
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A labelled transition system is a 4-tuple S =

that
@ states Q
@ actions A

@ transitions — C QR X AXxXQ
g - ¢ denotes (g,a,¢') € —

Q initial state gp € Q
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(Q,A,—,qo) such

Vending machine:

fart ~> coin-in
sta .—~

return coin_in

release

choose
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Labelled Transition Systems

A labelled transition system is a 4-tuple S = (Q, A, —, qo) such

that
Q states Q
Q actions A Vending machine:

@ transitions — C Q@ xAxQ

g - ¢ denotes (g,a,¢') € —

return coin_in

Q initial state gp € Q

release

cancel

Semantics: traces

choose

T . dpdi1d2a3dqasag . . .
T : coin_.in cancel return coin_in coin_in choose release ... @

F. Tiezzi (Unicam) FRS
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LTS-based Semantics of Arithmetic Expressions

! ’
mon=k E = E E» =~ E}
. (op) . () . (rr)
mon—k EioEy 25 EjoE EioEy =+ Ey 0 E)
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LTS-based Semantics of Arithmetic Expressions

! ’
mon=k E = E E» =~ E}
. (op) . () . (rr)
mon—k EioEy 25 EjoE EioEy =+ Ey 0 E)

(4+(7%3))/(6—-1) = (4+21)/(6—1) = 25/(6—1) — 25/5 — 5
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LTS-based Semantics of Arithmetic Expressions

! ’
mon=k E = E E» =~ E}
. (op) . () . (rr)
mon—k EioEy 25 EjoE EioEy =+ Ey 0 E)
/

(4+(7%3))/(6—-1) = (4+21)/(6—1) = 25/(6—1) — 25/5 — 5

7x3=21

4+21=25
7%3 25021 _
4421 15 05 similarly for — and /

44 (7T%3) = 4+421

(a+21)/(6 —1) -5 25/(6 — 1)
(4+(7%3))/(6 —1) = (4421)/(6 — 1)

F. Tiezzi (Unicam) FRS 25/28



Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple M = (Q, T, —, qo, F) s.t.

Q states Q finite !
@ alphabet r
@ transitions - CRxIMxQ

g - ¢ denotes (g,a,¢') € —
Q initial state q € Q
© accepting states F C Q
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Finite State Automata as language recognizers

A finite state automaton M is a 5-tuple M = (Q, T, —, qo, F) s.t.

Q states Q finite !
@ alphabet r
@ transitions - CRxIMxQ

g - ¢ denotes (g,a,¢') € —
Q initial state q € Q
© accepting states F C Q

p:W>q iff p&plix..ﬂpnzq W =ai---ap

Semantics of Finite State Automata
The language accepted by a Finite State Automata is the set:

LM)={weTlT*| g=>q and qcF}

F. Tiezzi (Unicam) FRS 26/28



Some Regular Bit-Strings — '={0,1}

0 0

1
1

L(A1) = {w | even number of 1's} L(A2) = {w | odd number of 0's}
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Some Regular Bit-Strings — '={0,1}

0 0 1 1

1
start *» @ start *»
1

L(A1) = {w | even number of 1's} L(A2) = {w | odd number of 0's}

regular languages are closed
w.r.t. the operations of N, U,
\, complement, reversal,
concatenation, star closure,
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-
Regular Languages

Chomsky Grammar Abstract
Hierarchy Restriction Language Machine
Type O unrestricted recursively enumerable Turing machines
Type 1 aAB — ayp context sensitive linear bounded automata
Type 2 A— context free nondeterministic
pushdown automata
Type 3 A—a A—aB regular finite state automata

with A, B€ NT,anda€ T and o, 8, v € (T UNT)*

F. Tiezzi (Unicam)
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