Formal Modelling of
 Software Intensive Systems

Formal Semantics of Regular Expressions

Francesco Tiezzi
University of Camerino
francesco.tiezzi@unicam.it

A.A. 2020/2021

Formal semantics

Three main approaches to formal semantics of programming languages:

- Operational Semantics (How a program computes) [Plotkin, Kahn]: Sets of computations resulting from the execution of programs by an abstract machine
- Denotational Semantics (What a program computes) [Strachey, Scott]:

An input/output function that denotes the effect of executing the program

- Axiomatic Semantics (What a program modifies) [Floyd, Hoare]:

Pairs of observable properties that hold before and after program execution

> Different purposes, complementary use

A motivating example: regular expressions

Regular expressions
Commonly used for:

- searching and manipulating text based on patterns

Example

Regular expression: [hc] at $\Rightarrow(h+c) ; a ; t$ Text: the cat eats the bat's hat rather than the rat Matches: cat, hat

A motivating example: regular expressions

Regular expressions
Commonly used for:

- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute
- Regular expressions as a simple programming language - Programming constructs: sequence, choice iteration stop
- We define the semantics of regular expressions by applying the three approaches
- We show that the three semantics are consistent

A motivating example: regular expressions

Regular expressions

Commonly used for:

- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute
- Regular expressions as a simple programming language
- Programming constructs: sequence, choice, iteration, stop
- We define the semantics of regular expressions by applying the three approaches
- We show that the three semantics are consistent

Regular expressions: syntax and informal semantics

Abstract syntax

Operators precedence

* binds more than + and ;
; binds more than +
Informal semantics
- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $F \cdot F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

$$
E::=0 \quad \left\lvert\, \begin{array}{ll|l|l|l}
& E & |a| & E+E & \mid \\
E & & E^{*}
\end{array}\right.
$$

Operators precedence

* binds more than + and ;
; binds more than +
Informal semantics
- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $E ; F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

$$
E::=0 \quad|\quad 1| a|E+E| E ; E \mid E^{*}
$$

Operators precedence

* binds more than + and ;
; binds more than +
Informal semantics
- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $F \cdot F$ is the expression F follomed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

Operators precedence

* binds more than + and ;
; binds more than +
Informal semantics
- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $E ; F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n>0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

$$
E::=0 \quad \left\lvert\, \begin{array}{ll|l|l|l}
& E & |a| & E+E & \mid \\
E & & E^{*}
\end{array}\right.
$$

Operators precedence

* binds more than + and ;
; binds more than +
Informal semantics
- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $E ; F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

Operators precedence

* binds more than + and ;
; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $E ; F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: syntax and informal semantics

Abstract syntax

$$
E::=0 \quad \left\lvert\, \begin{array}{ll|l|l|l|l}
& E & |a| & E+E & E & E
\end{array}\right.
$$

Operators precedence

* binds more than + and ;
; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E+F$ can be either E or F (choice operator)
- $E ; F$ is the expression E followed by F (sequencing)
- E^{*} is an n-length sequence of E with $n \geq 0$ (Kleene star)

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to
regular expressions

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup\{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$
\frac{E_{i_{1}} \xrightarrow{\alpha_{1}} E_{i_{1}}^{\prime} \cdots E_{i_{m}} \xrightarrow{\alpha_{m}} E_{i_{m}}^{\prime}}{o p\left(E_{1}, \cdots, E_{n}\right) \xrightarrow{\alpha} \text { op }\left(E_{1}^{\prime}, \cdots, E_{n}^{\prime}\right)} \quad \text { where }\left\{i_{1}, \cdots, i_{m}\right\} \subseteq\{1, \cdots, n\} .
$$

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup\{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$
\frac{E_{i_{1}} \xrightarrow{\alpha_{1}} E_{i_{1}}^{\prime} \cdots E_{i_{m}} \xrightarrow{\alpha_{m}} E_{i_{m}}^{\prime}}{\operatorname{op}\left(E_{1}, \cdots, E_{n}\right) \xrightarrow{\alpha} \operatorname{op}\left(E_{1}^{\prime}, \cdots, E_{n}^{\prime}\right)} \quad \text { where }\left\{i_{1}, \cdots, i_{m}\right\} \subseteq\{1, \cdots, n\} .
$$

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup\{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$
\frac{E_{i_{1}} \xrightarrow{\alpha_{1}} E_{i_{1}}^{\prime} \cdots E_{i_{m}} \xrightarrow{\alpha_{m}} E_{i_{m}}^{\prime}}{\operatorname{op}\left(E_{1}, \cdots, E_{n}\right) \xrightarrow{\alpha} \operatorname{op}\left(E_{1}^{\prime}, \cdots, E_{n}^{\prime}\right)} \quad \text { where }\left\{i_{1}, \cdots, i_{m}\right\} \subseteq\{1, \cdots, n\} .
$$

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{1}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{\xrightarrow{\mu} E^{\prime}}{E+F}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Star}_{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Sum ${ }_{2}$)

$$
\frac{F \xrightarrow{\mu} F^{\prime}}{+F \xrightarrow{\mu} F^{\prime}}
$$

$\left(\mathrm{Seq}_{2}\right) \quad \frac{E \xrightarrow{\varepsilon} 1}{E ; F \xrightarrow{\varepsilon} F}$
$\left(\right.$ Star $\left._{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$

Structural Operational Semantics (SOS [Plotkin])
Transition relation is the least relation satisfying the above rules

Regular expressions: operational semantics

Transition relation rules
(Tic)

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \quad \frac{E \xrightarrow{a} E^{\prime}}{E ; F \xrightarrow{a} E^{\prime} ; F}$
(Star ${ }_{1}$)

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\operatorname{Star}_{2}\right) \xrightarrow[{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}]{E^{\prime}}$

1 indicates the terminal state: the machine has completed the execution and loops by executing the empty action

Regular expressions: operational semantics

Transition relation rules
(Tic)
(Atom)
$\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{1}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{\underline{\mu} E^{\prime}}{E+F}$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\mathrm{Star}_{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

$\left(\operatorname{Star}_{2}\right) \xrightarrow[{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}]{E^{\prime}}$

Expression a executes action a and stops

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{1}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{\xrightarrow{\mu} E^{\prime}}{E+F}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Sum}_{2}\right)$
$F \xrightarrow{\mu} F^{\prime}$
$+F \xrightarrow{\mu} F^{\prime}$
$\left(\mathrm{Seq}_{2}\right) \quad \frac{E \stackrel{\varepsilon}{\longrightarrow} 1}{E ; F \xrightarrow{\varepsilon} F}$
$\left(\right.$ Star $\left._{1}\right)$

$\left(\mathrm{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$
$E+F$ can behave either as E or as F : if E evolves to E^{\prime} by performing action μ then $E+F$ can evolve to E^{\prime} by performing μ; similarly for F

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E ; F \xrightarrow{a} E^{\prime}} E^{\prime} ; F$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\right.$ Star $\left._{1}\right) \quad \overline{E^{*} \xrightarrow{\varepsilon} 1}$
(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\operatorname{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$
$E ; F$ executes the actions of E and, afterwards, the actions of F

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
1 \xrightarrow{\varepsilon} 1
$$

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E ; F \xrightarrow{a} E^{\prime}} E^{\prime} ; F$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\right.$ Star $\left._{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\operatorname{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$
$E ; F$ executes the actions of E and, afterwards, the actions of F

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\right.$ Sum $\left._{2}\right) \xrightarrow{F \xrightarrow{\mu} F^{\prime}} \underset{\underline{\mu} F^{\prime}}{ }$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\right.$ Star $\left._{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\mathrm{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$
$E ; F$ executes the actions of E and, afterwards, the actions of F

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Star}_{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$

$$
\begin{aligned}
& F \xrightarrow{\mu} F^{\prime} \\
& +F \xrightarrow{\mu} F^{\prime}
\end{aligned}
$$

$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\mathrm{Star}_{2}\right) \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{\stackrel{\mu}{\prime} E^{\prime}}$
E^{*} can either directly evolve to 1 or evolve to $E^{\prime} ; E^{*}$ if E evolves to E^{\prime}

Regular expressions: operational semantics

Transition relation rules
(Tic)
(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{1}\right) \xrightarrow{E+F \xrightarrow{\mu} E^{\prime}} \underset{ }{E+F}$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\mathrm{Star}_{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

$\left(\mathrm{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$
E^{*} can either directly evolve to 1 or evolve to $E^{\prime} ; E^{*}$ if E evolves to E^{\prime}

Regular expressions: operational semantics

Transition relation rules
(Tic)

$$
\overline{1 \xrightarrow{\varepsilon} 1}
$$

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\right.$ Star $\left._{1}\right)$

$$
\overline{E^{*} \xrightarrow{\varepsilon} 1}
$$

(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} 1}$
$\left(\right.$ Star $\left._{2}\right) \xrightarrow[{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}]{E}$
E^{*} can either directly evolve to 1 or evolve to $E^{\prime} ; E^{*}$ if E evolves to E^{\prime}

Regular expressions: operational semantics

Transition relation rules
(Tic)

$\left(\right.$ Sum $\left._{1}\right) \frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}}$
$\left(\mathrm{Seq}_{1}\right) \xrightarrow{E \stackrel{a}{\longrightarrow} E^{\prime}} \underset{\xrightarrow{a} E^{\prime} ; F}{ }$
$\left(\mathrm{Star}_{1}\right)$
(Atom) $\underset{a \xrightarrow{a} 1}{ } a \in A$
$\left(\right.$ Sum $\left._{2}\right) \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}$
$\left(\mathrm{Seq}_{2}\right) \xrightarrow{E ; F \xrightarrow{\varepsilon} F}$
$\left(\operatorname{Star}_{2}\right) \xrightarrow{E \xrightarrow{\mu} E^{\prime}} \underset{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}{ }$

No rule for 0: expression 0 does nothing 0 indicates the deadlock state: the machine is stuck

The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for each regular expression E (essentially a fragment of the whole LTS):

- the initial state is E (we shall often omit to mark it)
- the set of labels is A
- the set of states consists of all regular expressions that can be reached starting from E via a sequence of transitions
- the transition relation is the one induced from the SOS rules
- the only final state is 1 (we shall often omit to mark it)

Semantic correspondence

Given any regular expression E, the automaton generated by the SOS rules has the property of recognizing exactly the language $\mathcal{L} \llbracket E \rrbracket$, but it is not the unique automaton satisfying such property.
Other "similar" automata might have less (or more) ε transitions.

A few examples for Regular Expressions

$$
(a+b)^{*} \xrightarrow{a} 1 ;(a+b)^{*}
$$

$$
\begin{gathered}
\frac{\stackrel{a}{a} 1}{a+\text { Atom })} \\
(a+b)^{*} \xrightarrow{a} 1 ;(a+b)^{*} \\
\left.a+\text { Sum }_{1}\right) \\
\text { Star } \left._{2}\right)
\end{gathered}
$$

A few examples for Regular Expressions

$$
(a+b)^{*} \xrightarrow{a} 1 ;(a+b)^{*}
$$

$$
\left.\begin{array}{c}
\frac{\stackrel{a}{\longrightarrow} 1}{\left.a+\text { Atom }^{2}\right)}\left(\text { Sum }_{1}\right) \\
(a+b)^{*} \xrightarrow{a} 1 ;(a+b)^{*}
\end{array} \text { Star }_{2}\right)
$$

$$
1 ;(a+b)^{*} \xrightarrow{\varepsilon}(a+b)^{*}
$$

$$
\frac{\overline{1 \xrightarrow{\varepsilon} 1}(\text { Tic })}{1 ;(a+b)^{*} \xrightarrow{\varepsilon}(a+b)^{*}}\left(\text { Seq }_{2}\right)
$$

Regular expressions: operational semantics

Definition (Traces of Regular expressions)

- Let E be a regular expression and $s \in A^{*}$ be a string, we write $E \stackrel{s}{\Rightarrow} E^{\prime}$ if there exists $\mu_{1}, \ldots, \mu_{n} \in A \cup\{\varepsilon\}(n \geq 0)$ s.t.:
(1) the string $\mu_{1} \ldots \mu_{n}$ coincides with s (up to some occurrence of ε)
(2) $E \xrightarrow{\mu_{1}} E_{1} \xrightarrow{\mu_{2}} E_{2} \xrightarrow{\mu_{3}} \ldots \xrightarrow{\mu_{n}} E_{n} \equiv E^{\prime} \quad$ (\equiv syntactical equiv.)
- The set of traces of E is the set of strings

$$
\operatorname{Traces}(E)=\left\{s \in A^{*}: E \stackrel{s}{\Rightarrow} 1\right\}
$$

Regular expressions: operational semantics

Definition (Traces of Regular expressions)

- Let E be a regular expression and $s \in A^{*}$ be a string, we write $E \stackrel{s}{\Rightarrow} E^{\prime}$ if there exists $\mu_{1}, \ldots, \mu_{n} \in A \cup\{\varepsilon\}(n \geq 0)$ s.t.:
(1) the string $\mu_{1} \ldots \mu_{n}$ coincides with s (up to some occurrence of ε)

$$
\text { (2) } E \xrightarrow{\mu_{1}} E_{1} \xrightarrow{\mu_{2}} E_{2} \xrightarrow{\mu_{3}} \ldots \xrightarrow{\mu_{n}} E_{n} \equiv E^{\prime} \quad \text { (} \equiv \text { syntactical equiv.) }
$$

- The set of traces of E is the set of strings

$$
\operatorname{Traces}(E)=\left\{s \in A^{*}: E \stackrel{s}{\Rightarrow} 1\right\}
$$

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

$$
\operatorname{Traces}(E)=\operatorname{Traces}(F)
$$

Regular expressions: operational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- Are they semantically equivalent?

We have to show that:

- s is a trace of $(a+b)^{*}$ if and only if s is a trace of $\left(a^{*}+b^{*}\right)$

Regular expressions: operational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- $\operatorname{Traces}\left((a+b)^{*}\right) \stackrel{?}{=} \operatorname{Traces}\left(\left(a^{*}+b^{*}\right)^{*}\right)$

We have to show that:

Regular expressions: operational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- $\operatorname{Traces}\left((a+b)^{*}\right) \stackrel{?}{=} \operatorname{Traces}\left(\left(a^{*}+b^{*}\right)^{*}\right)$

We have to show that:

- s is a trace of $(a+b)^{*}$ if and only if s is a trace of $\left(a^{*}+b^{*}\right)^{*}$

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime} ;$ w.l.o.g. assume $s=a s^{\prime}$. The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \xlongequal{a}(a+b)^{*}$

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime} ;$ w.l.o.g. assume $s=a s^{\prime}$. The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \xlongequal{a}(a+b)^{*}$

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime}$; w.l.o.g. assume $s=a s^{\prime}$. The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \stackrel{a}{\Rightarrow}(a+b)^{*}$

Regular expressions: operational semantics

if s is a trace of $(a+b)^{*}$ then s is a trace of $\left(a^{*}+b^{*}\right)^{*}$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime} ;$ w.l.o.g. assume $s=a s^{\prime}$.

The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \stackrel{a}{\Rightarrow}(a+b)^{*}$ This is proved via the following derivations:

$$
\begin{gathered}
\frac{\stackrel{a}{a} 1}{a+\text { Atom }^{2}}\left(\text { Sum }_{1}\right) \\
(a+b)^{*} \xrightarrow{a} 1 ;(a+b)^{*}
\end{gathered}\left(\text { Star }_{2}\right)
$$

$$
\frac{\stackrel{1 \stackrel{\varepsilon}{\longrightarrow} 1}{ }(\text { Tic })}{1 ;(a+b)^{*} \xrightarrow{\varepsilon}(a+b)^{*}}\left(\text { Seq }_{2}\right)
$$

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime}$; w.l.o.g. assume $s=a s^{\prime}$. The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \stackrel{a}{\Rightarrow}(a+b)^{*}$ By hypothesis, $(a+b)^{*} \xrightarrow{a s^{\prime}} 1$, thus $(a+b)^{*} \stackrel{s^{\prime}}{\Longrightarrow} 1$.
By induction, we have $\left(a^{*}+b^{*}\right)^{*} \stackrel{s}{\Rightarrow} 1$, thus it is sufficient to prove
$\left(a^{*}+b^{*}\right)^{*} \stackrel{a}{\Rightarrow}\left(a^{*}+b^{*}\right)^{*}$ to conclude that $\left(a^{*}+b^{*}\right)^{*} \stackrel{s}{\Rightarrow} 1$.

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime}$; w.l.o.g. assume $s=a s^{\prime}$.

The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \stackrel{a}{\Rightarrow}(a+b)^{*}$ By hypothesis, $(a+b)^{*} \xrightarrow{a s^{\prime}} 1$, thus $(a+b)^{*} \stackrel{s^{\prime}}{\Longrightarrow} 1$.
By induction, we have $\left(a^{*}+b^{*}\right)^{*} \stackrel{s^{\prime}}{\Rightarrow} 1$, thus it is sufficient to prove $\left(a^{*}+b^{*}\right)^{*} \xlongequal{a}\left(a^{*}+b^{*}\right)^{*}$ to conclude that $\left(a^{*}+b^{*}\right)^{*} \stackrel{5}{\Rightarrow} 1$.

Regular expressions: operational semantics

$$
\text { if } s \text { is a trace of }(a+b)^{*} \text { then } s \text { is a trace of }\left(a^{*}+b^{*}\right)^{*}
$$

Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime}$; w.l.o.g. assume $s=a s^{\prime}$.

The only possible a-transition for $(a+b)^{*}$ is $(a+b)^{*} \xlongequal{a}(a+b)^{*}$ By hypothesis, $(a+b)^{*} \xrightarrow{a s^{\prime}} 1$, thus $(a+b)^{*} \stackrel{s^{\prime}}{\Longrightarrow} 1$.
By induction, we have $\left(a^{*}+b^{*}\right)^{*} \stackrel{s^{\prime}}{\Rightarrow} 1$, thus it is sufficient to prove $\left(a^{*}+b^{*}\right)^{*} \stackrel{a}{\Rightarrow}\left(a^{*}+b^{*}\right)^{*}$ to conclude that $\left(a^{*}+b^{*}\right)^{*} \stackrel{s}{\Rightarrow} 1$.

Regular expressions: operational semantics

if s is a trace of $(a+b)^{*}$ then s is a trace of $\left(a^{*}+b^{*}\right)^{*}$
Induction on the length of s.

- Base step: $|s|=0$ (i.e., $s=\varepsilon$). Trivial: $\left(\operatorname{Star}_{1}\right),\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} 1$
- Inductive step: $|s|>0$, then $s=a s^{\prime}$ or $s=b s^{\prime}$; w.l.o.g. assume $s=a s^{\prime}$. $\left(a^{*}+b^{*}\right)^{*} \stackrel{a}{\Rightarrow}\left(a^{*}+b^{*}\right)^{*}:$
$\underset{a^{*} \xrightarrow{a} 1 ; a^{*}}{a \xrightarrow{a}\left(\text { Atar }_{2}\right)}$
(Sum ${ }_{1}$)

$$
\frac{a^{*}+b^{*} \xrightarrow{a} 1 ; a^{*}}{\left.b^{*}\right)^{*} \xrightarrow{a} 1 ; a^{*} ;\left(a^{*}+b^{*}\right)^{*}}\left(\text { Star }_{2}\right)
$$

$$
\overline{1 ; a^{*} ;\left(a^{*}+b^{*}\right)^{*} \xrightarrow{\varepsilon} a^{*} ;\left(a^{*}+b^{*}\right)^{*}}\left(\text { Seq }_{2}\right)
$$

$$
\overline{a^{*} ;\left(a^{*}+b^{*}\right)^{*} \stackrel{\varepsilon}{\longrightarrow}\left(a^{*}+b^{*}\right)^{*}}\left(\operatorname{Seq}_{2}\right)
$$

Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression is a finite state automaton

Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression is a finite state automaton

Definition (Regular expressions as finite state automata)
Let E be a reg. expr., the finite state automaton associated to E is

$$
M_{E}=\left(Q_{E}, A, \rightarrow_{E}, E,\{1\}\right)
$$

- States: $Q_{E}=\left\{F \mid \exists s \in A^{*} . E \stackrel{s}{\Rightarrow} F\right\} \quad$ (expressions from E)
- Actions: A
(alphabet of E)
- Transition relation: \rightarrow_{E} s.t. $F \xrightarrow{\mu}{ }_{E} F^{\prime}$ if $F \xrightarrow{\mu} F^{\prime}$ with $\mu \in A \cup\{\varepsilon\}$
- Initial state: expression E
- Accepting states: expression 1

Regular expressions: operational semantics

Automata associated to $(a+b)^{*}$ and $\left(a^{*}+b^{*}\right)^{*}$

Regular expressions: operational semantics

Theorem

Let E be a regular expression and M_{E} the associated automaton, then

$$
\operatorname{Traces}(E)=L\left(M_{E}\right)
$$

where $L\left(M_{E}\right)=\left\{s \in A^{*}: E \xrightarrow{s}{ }_{E} 1\right\}$ (language accepted by M_{E})
Proof (sketch). Two cases:
If $w \in \operatorname{Traces}(E)$, then $E \stackrel{w}{\Rightarrow} 1$. The proof that $w \in L\left(M_{E}\right)$ proceeds by
induction on the length of w.
Given $w \in L\left(M_{E}\right)$, we prove by induction on the length of w that
$w \in \operatorname{Traces}(E)$

Regular expressions: operational semantics

Theorem

Let E be a regular expression and M_{E} the associated automaton, then

$$
\operatorname{Traces}(E)=L\left(M_{E}\right)
$$

where $L\left(M_{E}\right)=\left\{s \in A^{*}: E \xrightarrow{s}{ }_{E} 1\right\}$ (language accepted by M_{E})
Proof (sketch). Two cases:
\subseteq If $w \in \operatorname{Traces}(E)$, then $E \stackrel{w}{\Rightarrow} 1$. The proof that $w \in L\left(M_{E}\right)$ proceeds by induction on the length of w.
\supseteq Given $w \in L\left(M_{E}\right)$, we prove by induction on the length of w that $w \in \operatorname{Traces}(E)$.

Regular expressions: denotational semantics

Denotational Semantics (What a program computes)

- an inвчあ
- associate to each program a mathematical object, called denotation, that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we need some operators on languages. If L, L_{1} and L_{2} are sets of strings:

- $L_{1} \cdot L_{2}=\left\{x y: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- $L^{*}=\bigcup_{n \geq 0} L^{n}$ where
- $L^{0}=\{\varepsilon\}$
- $L^{n+1}=L \cdot L^{n}$

We have: $\emptyset \cdot L=L \cdot \emptyset=\emptyset$ (Why?)

Regular expressions: denotational semantics

Semantic function \mathcal{L} for regular expressions

The denotational semantics is inductively defined by the rules below and associates a subset of A^{*} to each regular expressions:

$$
\mathcal{L} \llbracket \rrbracket: R . E . \rightarrow 2^{A^{*}}
$$

$$
\begin{aligned}
& \mathcal{L} \llbracket 0 \rrbracket=\emptyset \\
& \mathcal{L} \llbracket 1 \rrbracket=\{\varepsilon\} \\
& \mathcal{L} \llbracket a \rrbracket=\{a\} \quad(\text { for } a \in A) \\
& \mathcal{L} \llbracket E+F \rrbracket=\mathcal{L} \llbracket E \rrbracket \cup \mathcal{L} \llbracket F \rrbracket \\
& \mathcal{L} \llbracket E ; F \rrbracket=\mathcal{L} \llbracket E \rrbracket \cdot \mathcal{L} \llbracket F \rrbracket \\
& \mathcal{L} \llbracket E^{*} \rrbracket=(\mathcal{L} \llbracket E \rrbracket)^{*}
\end{aligned}
$$

Regular expressions: denotational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- Are they semantically equivalent?

We have to show that:

- $\kappa \pi(a+b)^{*} \rrbracket \subset C \pi\left(a^{*}+b^{*}\right)^{*} \rrbracket$
- vice versa

Regular expressions: denotational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- $\mathcal{L} \llbracket(a+b)^{*} \rrbracket \stackrel{?}{=} \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket$

We have to show that:

- $\mathcal{L} \llbracket(a+b)^{*} \rrbracket \subseteq \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket$
- vice versa

Regular expressions: denotational semantics

Example

$$
(a+b)^{*} \quad\left(a^{*}+b^{*}\right)^{*}
$$

- They are syntactically different
- $\mathcal{L} \llbracket(a+b)^{*} \rrbracket \stackrel{?}{=} \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket$

We have to show that:

- $\mathcal{L} \llbracket(a+b)^{*} \rrbracket \subseteq \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket$
- vice versa

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket(a+b)^{*} \rrbracket \subseteq \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket
$$

$$
\begin{aligned}
\mathcal{L} \llbracket(a+b)^{*} \rrbracket & =(\mathcal{L} \llbracket(a+b) \rrbracket)^{*} \\
& =(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*} \\
& \subseteq\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \\
& \left.=\left(\mathcal{L} \llbracket a^{*} \rrbracket \cup \mathcal{L} \llbracket b^{*} \rrbracket\right)\right)^{*} \\
& =\left(\mathcal{L} \llbracket a^{*}+b^{*} \rrbracket\right)^{*} \\
& =\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket
\end{aligned}
$$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket(a+b)^{*} \rrbracket \subseteq \mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket
$$

We have:

$$
\begin{aligned}
\mathcal{L} \llbracket(a+b)^{*} \rrbracket & =(\mathcal{L} \llbracket(a+b) \rrbracket)^{*} \\
& =(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*} \\
& \subseteq\left(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \\
& =\left(\mathcal{L} \llbracket a^{*} \rrbracket \cup \mathcal{L} \llbracket b^{*} \rrbracket\right)^{*} \\
& =\left(\mathcal{L} \llbracket a^{*}+b^{*} \rrbracket\right)^{*} \\
& =\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket
\end{aligned}
$$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket \subseteq \mathcal{L} \llbracket(a+b)^{*} \rrbracket
$$

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}
$$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket \subseteq \mathcal{L} \llbracket(a+b)^{*} \rrbracket
$$

We have to prove:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}
$$

We exploit:

$$
(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}=\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Thus, we have just to prove that:

$$
\left(\mathcal{L} \llbracket a^{\pi *} \cup \mathcal{L} \llbracket b^{\pi}\right)^{*} \subseteq\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)
$$

Let $s \in\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*}$. Therefore, for some $n \geq 0$, we have $s=s_{1} s_{2} \cdots s_{n}$ and either $s_{i} \in \mathcal{L} \llbracket a \rrbracket^{*}$ or $s_{i} \in \mathcal{L} \llbracket b \rrbracket^{*}$, for all $0 \leq i \leq n$. Thus, $s_{i} \in(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}$, for all $0 \leq i \leq n$, hence $s \in\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket \subseteq \mathcal{L} \llbracket(a+b)^{*} \rrbracket
$$

We have to prove:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}
$$

We exploit:

$$
(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}=\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Thus, we have just to prove that:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)
$$

Let $s \in\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*}$. Therefore, for some $n \geq 0$, we have $s=s_{1} s_{2} \cdots s_{n}$ and either $s_{i} \in \mathcal{L} \llbracket a \rrbracket^{*}$ or $s_{i} \in \mathcal{L} \llbracket b \rrbracket^{*}$, for all $0 \leq i \leq n$. Thus, $s_{i} \in(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}$, for all $0 \leq i \leq n$, hence $s \in\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket \subseteq \mathcal{L} \llbracket(a+b)^{*} \rrbracket
$$

We have to prove:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}
$$

We exploit:

$$
(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}=\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Thus, we have just to prove that:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Regular expressions: denotational semantics

$$
\mathcal{L} \llbracket\left(a^{*}+b^{*}\right)^{*} \rrbracket \subseteq \mathcal{L} \llbracket(a+b)^{*} \rrbracket
$$

We have to prove:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}
$$

We exploit:

$$
(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}=\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Thus, we have just to prove that:

$$
\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*} \subseteq\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}
$$

Let $s \in\left(\mathcal{L} \llbracket a \rrbracket^{*} \cup \mathcal{L} \llbracket b \rrbracket^{*}\right)^{*}$. Therefore, for some $n \geq 0$, we have $s=s_{1} s_{2} \cdots s_{n}$ and either $s_{i} \in \mathcal{L} \llbracket a \rrbracket^{*}$ or $s_{i} \in \mathcal{L} \llbracket b \rrbracket^{*}$, for all $0 \leq i \leq n$.
Thus, $s_{i} \in(\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}$, for all $0 \leq i \leq n$, hence $s \in\left((\mathcal{L} \llbracket a \rrbracket \cup \mathcal{L} \llbracket b \rrbracket)^{*}\right)^{*}$.

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

$$
w \in \operatorname{Traces}(E) \Longleftrightarrow w \in \mathcal{L} \llbracket E \rrbracket
$$

Proof. Two cases:
By induction on the structure of E
By induction on the structure of E Property
Let E and F regular expressions and s a string.

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

$$
w \in \operatorname{Traces}(E) \Longleftrightarrow w \in \mathcal{L} \llbracket E \rrbracket
$$

Proof. Two cases:
\Rightarrow By induction on the structure of E.
\Leftarrow By induction on the structure of E.
Property
Let E and F regular expressions and s a string.

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

$$
w \in \operatorname{Traces}(E) \Longleftrightarrow w \in \mathcal{L} \llbracket E \rrbracket
$$

Proof. Two cases:
\Rightarrow By induction on the structure of E.
$\Leftarrow B y$ induction on the structure of E.

Property

Let E and F regular expressions and s a string.

$$
E ; F \xlongequal{s} 1 \text { implies } \exists x, y \text { s.t. } s=x y \text { and } E \xrightarrow{x} 1, F \xrightarrow{y} 1
$$

Regular expressions' semantics: equivalence result

Proof (\Rightarrow). By induction on the structure of E.

$$
\begin{aligned}
& E \equiv 0 \text { Trivial, because } \operatorname{Traces}(0)=\emptyset=\mathcal{L} \llbracket 0 \rrbracket . \\
& E \equiv 1 \text { Trivial, because } \operatorname{Traces}(1)=\{\varepsilon\}=\mathcal{L} \llbracket 1 \rrbracket . \\
& E \equiv a \text { Trivial, because } \operatorname{Traces}(a)=\{a\}=\mathcal{L} \llbracket a \rrbracket . \\
& E \equiv E_{1}+E_{2} \text { If } w \in \operatorname{Traces}\left(E_{1}+E_{2}\right) \text {, then } \exists \mu \in A \cup\{\varepsilon\} \text { and } w^{\prime} \in A^{*} \\
& \quad \text { with } w=\mu w^{\prime} \text { and }
\end{aligned}
$$

$$
E_{1}+E_{2} \xrightarrow{\mu} F \xrightarrow{w^{\prime}} 1
$$

where

$$
E_{1} \xrightarrow{\mu} F \stackrel{w^{\prime}}{\Longrightarrow} 1 \quad \text { or } \quad E_{2} \xrightarrow{\mu} F \xrightarrow{w^{\prime}} 1
$$

By inductive hypothesis

$$
w \in \mathcal{L} \llbracket E_{1} \rrbracket \quad \text { or } \quad w \in \mathcal{L} \llbracket E_{2} \rrbracket
$$

Thus, $w \in \mathcal{L} \llbracket E_{1} \rrbracket \cup \mathcal{L} \llbracket E_{2} \rrbracket=\mathcal{L} \llbracket E_{1}+E_{2} \rrbracket$.

Equivalence result

$E \equiv E_{1} ; E_{2}$ If $w \in \operatorname{Traces}\left(E_{1} ; E_{2}\right)$, by the previous property, $\exists x, y$ s.t.

$$
E_{1} \stackrel{x}{\Longrightarrow} 1 \quad \text { and } \quad E_{2} \xlongequal{y} 1
$$

with $w=x y$. By inductive hypothesis, we have

$$
x \in \mathcal{L} \llbracket E_{1} \rrbracket \quad \text { and } \quad y \in \mathcal{L} \llbracket E_{2} \rrbracket,
$$

and, hence, $w \in \mathcal{L} \llbracket E_{1} \rrbracket \cdot \mathcal{L} \llbracket E_{2} \rrbracket=\mathcal{L} \llbracket E_{1} ; E_{2} \rrbracket$.
$E \equiv E_{1}^{*}$ Let $S\left(E_{1}^{*}, w\right)$ be the number of application of $\left(S t a r_{2}\right)$ in $E_{1}^{*} \stackrel{w}{\Longrightarrow} 1$.
We demonstrate by induction on $n=S\left(E_{1}^{*}, w\right)$ that

$$
w \in \mathcal{L}^{n} \llbracket E_{1} \rrbracket . \quad\left(\mathcal{L}^{n} \llbracket E_{1} \rrbracket \text { stands for }\left(\mathcal{L} \llbracket E_{1} \rrbracket\right)^{n}\right)
$$

Equivalence result

$$
E \equiv E_{1}^{*} \ldots
$$

If $S\left(E_{1}^{*}, w\right)=0$, no (Star $)_{2}$ but (Star $)$ used, thus $w=\varepsilon$.
By definition, $\varepsilon \in \mathcal{L}^{0} \llbracket E_{1} \rrbracket=\{\varepsilon\}$.
If $S\left(E_{1}^{*}, w\right)=n+1$, then $\exists x, y$ s.t. $w=x y$ and

$$
E_{1}^{*} \xrightarrow{x} E_{1}^{*} \xrightarrow{y} E_{1}^{*} \xrightarrow{\varepsilon} 1
$$

with $S\left(E_{1}^{*}, x\right)=n$.
By (local) induction hypothesis $x \in \mathcal{L}^{n} \llbracket E_{1} \rrbracket$. Since $S\left(E_{1}^{*}, y\right)=1,\left(S t a r_{2}\right)$ is applied only once in $E_{1}^{*} \xlongequal{y} E_{1}^{*}$, thus $\exists \mu \in A \cup\{\varepsilon\}$ and $y^{\prime} \in A^{*}$ s.t. $y=\mu y^{\prime}, E_{1} \xrightarrow{\mu} E^{\prime}$ and

$$
E_{1}^{*} \xrightarrow{\mu} E^{\prime} ; E_{1}^{*} \xrightarrow{y^{\prime}} E_{1}^{*} .
$$

Since $E^{\prime} ; E_{1}^{*} \xlongequal{y^{\prime}} E_{1}^{*}$ does not use (Star $)$, we have $E^{\prime} \xrightarrow{y^{\prime}} 1$ and, hence, $E_{1} \xrightarrow{\mu y^{\prime}} 1$. By (structural) inductive hypotesis, $y \in \mathcal{L} \llbracket E_{1} \rrbracket$. Using $x \in \mathcal{L}^{n} \llbracket E_{1} \rrbracket$, we conclude.

Equivalence result

Proof (\Leftarrow). By induction on the structure of E.
For the sake of simplicity, we only consider the case:

$$
\begin{aligned}
& E \equiv E_{1}^{*} \text { If } w \in \mathcal{L} \llbracket E_{1}^{*} \rrbracket \text {, then } \exists n \text { s.t. } w \in \mathcal{L}^{n} \llbracket E_{1} \rrbracket . \\
& \text { Then, } \exists x_{1}, \ldots, x_{n} \in \mathcal{L} \llbracket E_{1} \rrbracket \text { s.t. } w=x_{1} \cdots x_{n} .
\end{aligned}
$$

By inductive hypothesis, $x_{i} \in \operatorname{Traces}\left(E_{1}\right)$, that is $E_{1} \xrightarrow{x_{i}} 1$.
By repeatedly applying ($S t a r_{2}$), we obtain $E_{1}^{*} \stackrel{x_{i}}{\Longrightarrow} 1 ; E_{1}^{*}$.
Since $1 ; E_{1}^{*} \xrightarrow{\varepsilon} E_{1}^{*}$, by $\left(S e q_{2}\right)$, and $E_{1}^{*} \xrightarrow{\varepsilon} 1$, by $\left(\operatorname{Star}_{1}\right)$, we have

$$
E_{1}^{*} \stackrel{x_{1}}{\Longrightarrow} 1 ; E_{1}^{*} \stackrel{x_{2}}{\Longrightarrow} 1 ; E_{1}^{*} \cdots \xrightarrow{x_{n}} 1 ; E_{1}^{*} \xrightarrow{\varepsilon} 1
$$

and, therefore, $E_{1}^{*} \stackrel{w}{\Longrightarrow} 1$.

Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

- it relates observable properties before and after program execution
- in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition
- it consists of a set of axioms and inference rules that define a relation
- no state in regular expressions
- the observed nronerty is the canability of equivalent expressions to represent the same regular language
- axioms and rules define an equivalence relation $E=F$ that partition the set of all expressions

Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

- it relates observable properties before and after program execution
- in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition
- it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions

- no state in regular expressions
- the observed property is the capability of equivalent expressions to represent the same regular language
- axioms and rules define an equivalence relation $E=F$ that partition the set of all expressions

Regular expressions: axiomatic semantics

Axioms for $E=F$

$\begin{aligned} & E+(F+G)=(E+F)+G \\ & E+F=F+E \\ & E+0=E \end{aligned}$	$\begin{aligned} & (\text { assoc }+) \\ & (\text { comm }+) \\ & (\text { unit }+) \end{aligned}$	(monoid+)
$\begin{aligned} & E ;(F ; G)=(E ; F) ; G \\ & 1 ; E=E \end{aligned}$	$\begin{aligned} & \text { (assoc ;) } \\ & (\text { unit ;) } \end{aligned}$	(monoid ;)
$\begin{aligned} & E ;(F+G)=E ; F+E ; G \\ & (E+F) ; G=E ; G+F ; G \\ & 0 ; E=0 \end{aligned}$	(distribL) (distribR) (absorb 0)	(modulo +, ;)
$E+E=E$		(idemp +)
$\begin{aligned} & E^{*}=1+E^{*} ; E \\ & E^{*}=(1+E)^{*} \\ & 0^{*}=1 \end{aligned}$	$\begin{aligned} & \text { (unfolding) } \\ & \text { (absorb *) } \\ & \left(0^{0}\right) \end{aligned}$	(rules *)

Regular expressions: axiomatic semantics

Rules for $E=F$

Rule 1 (Substitution):

$$
\begin{array}{lll}
E=F & G=H & \text { where } G^{\prime} \text { is obtained from } G \text { by replacing } \\
\hline G^{\prime}=H & G^{\prime}=G & \text { an occurrence of } E \text { by } F
\end{array}
$$

Rule 2 (Equation solution):

$$
\begin{gathered}
E=E ; F+G \\
E=G ; F^{*}
\end{gathered}
$$

Regular expressions: axiomatic semantics

- The axioms are sound w.r.t. the observed property, i.e. $=$ equates expressions representing the same language
- E.g., given $0 ; E=0$, we have:

$$
\mathcal{L} \llbracket 0 ; E \rrbracket=\mathcal{L} \llbracket 0 \rrbracket \cdot \mathcal{L} \llbracket E \rrbracket=\emptyset \cdot \mathcal{L} \llbracket E \rrbracket=\emptyset=\mathcal{L} \llbracket 0 \rrbracket
$$

- Applying the axiomatic approach could be more laborious
- E.g., proving $E ; 0=0$ requires the following inference:

Regular expressions: axiomatic semantics

- The axioms are sound w.r.t. the observed property, i.e. $=$ equates expressions representing the same language
- E.g., given $0 ; E=0$, we have:

$$
\mathcal{L} \llbracket 0 ; E \rrbracket=\mathcal{L} \llbracket 0 \rrbracket \cdot \mathcal{L} \llbracket E \rrbracket=\emptyset \cdot \mathcal{L} \llbracket E \rrbracket=\emptyset=\mathcal{L} \llbracket 0 \rrbracket
$$

- Applying the axiomatic approach could be more laborious
- E.g., proving $E ; 0=0$ requires the following inference:

$$
\overline{0 ; 0^{*}=0}(\text { absorb } 0)
$$

$$
\begin{aligned}
& \left.\frac{\overline{0=0 ; 0}(\text { absorb } 0) E ; 0=E ; 0}{} \frac{E ; 0 ; 0=E ; 0}{\frac{E ; 0 ; 0+0=E ; 0}{E ; 0=0 ; 0^{*}}(\text { rule } 1) \frac{E ; 0+0=E ; 0}{}(\text { rule } 2)} \text { (rule 1) } 1\right) \\
& \text { orb } 0) \quad \\
& E ; 0=0
\end{aligned}
$$

Regular expressions' semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

$$
E=F \Longleftrightarrow \mathcal{L} \llbracket E \rrbracket=\mathcal{L} \llbracket F \rrbracket
$$

Proof (sketch). Two cases:
(Soundness) Easy to prove
(Completeness) Require a bit of work (e.g., expression normalization)

The three semantics for regular expressions are equivalent

Regular expressions' semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

$$
E=F \Longleftrightarrow \mathcal{L} \llbracket E \rrbracket=\mathcal{L} \llbracket F \rrbracket
$$

Proof (sketch). Two cases:
\Rightarrow (Soundness) Easy to prove
\Leftarrow (Completeness) Require a bit of work (e.g., expression normalization)

The three semantics for regular expressions are equivalent

Regular expressions' semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

$$
E=F \Longleftrightarrow \mathcal{L} \llbracket E \rrbracket=\mathcal{L} \llbracket F \rrbracket
$$

Proof (sketch). Two cases:
\Rightarrow (Soundness) Easy to prove
\Leftarrow (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

