Rule-Based Systems: Logic Programming

Remember: our first rule-based system

```
father(peter, mary)
father(peter,john)
mother(mary,mark)
mother(jane, mary)
```

```
father(X,Y) AND father(Y,Z) \rightarrow grandfather(X,Z)
father(X,Y) AND mother(Y,Z) \rightarrow grandfather(X,Z)
mother(X,Y) AND father(Y,Z) \rightarrow grandmother(X,Z)
mother(X,Y) AND mother(Y,Z) \rightarrow grandmother(X,Z)
father(X,Y) AND father(X,Z) \rightarrow sibling(Y,Z)
mother(X,Y) AND mother(X,Z) \rightarrow sibling(Y,Z)
```

The rules can be used to

- Derive all grandparent and sibling relationships (forward chaining)
- Answer questions about relationships (backward chaining)

Logic Programming

- Logic programming is the use of
 - logic as a declarative representation language
 - Backward chaining as inference rule
- Logic Programming is the basis of the programming language PROLOG

Logic Programs – A Sequence of Horn Clauses

- The sentences of a logic program are Horn clauses
 - Facts:
 - Rules: $H \leftarrow B_1 \wedge B_2 \wedge ... \wedge B_n$
- A Horn clause without any head H is called a query
 - Query: $\leftarrow B_1 \wedge B_2 \wedge ... \wedge B_n$
- Queries are not part of a logic program, they start the inference

Predicates and Literals

- Predicates are the building blocks of clauses
- Predicates have a name and arguments (parameters). Arity is the number of arguments.
- Predicates combine values which "makes sense" together (are true)
- Examples:
 - person(peter)
 - married(peter, cindy)
 - Appointment(1.4.2016, holger, "Millner", "Lecture KE")
 - not female(holger)
- Literals are predicates and negated predicates

Variables, Constants, and Data

- Data are classical data which you know from programming languages
 - ***** 31
 - "Lecture KE"
 - 21.3.2015
- Constants are values
 - peter
 - cindy
- Differences between constants and data
 - data: rich operations (+, -, ...) and comparisons (=, <, >, <=, ...)
 - constants: only identity (=), but very quick!
- Variables are placeholders for constants or data
 - likes(holger, X)

Exercises

- Write as a logic programme
 - john is a person
 - fhnw is a university
 - john is immatriculated at fhnw
 - A student is a person who is immatriculated at a university.

PROLOG

PROLOG (= PROgramming in LOGic) is a programming language based on Horn clauses

Syntax:

- ◆ Prolog uses ":-" instead of "←"
- Literals in the body are separated by comma ", " (the comma is equivalent to the logical AND \wedge)
- Each clause ends with a period "."
- Variables are either
 - strings starting with capital letter: X, Person
 - strings starting with a underline: x, person

A Logic Programme in PROLOG Syntax

```
father(peter, mary).
father (peter, john).
mother(mary, mark).
mother(jane, mary).
grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).
grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).
sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).
```

All Clauses with the same predicate in the head are called the definition of the predicate

Reasoning in Logic Programming

- INPUT:
 - A logic programme P and
 - a query Q (?- Q₁, Q₂, ..., Q_m)
- INFERENCE: Backward Chaining
- OUTPUT:
 - If the query Q does *not* contain variables the answer is
 - yes if Q can be deduced from P
 - no, if Q cannot be deduced from P
 - If the query Q does contain variables the answer is
 - A substition σ for the variables in Q such $Q\sigma$ can be deduced from P
 - no, if there is no substitution σ such that $Q\sigma$ can be deduced from Q

A Logic Program and Queries

```
father (peter, mary).
father (peter, john).
mother (mary, mark).
mother(jane,mary).
grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).
grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) := mother(X,Y), mother(Y,Z).
sibling(Y,Z) := father(X,Y), father(X,Z).
sibling(Y,Z) := mother(X,Y), mother(X,Z).
Queries: ?- father (peter, john).
              ?- father(peter,X).
              ?- grandfather(peter, mark).
              ?- grandfather(peter, mary).
              ?- grandfather(peter,S).
              ?- sibling(X,Y).
```


Substitution

- A substitution is a finite set of the form $\sigma = \{v_1/t_1, \ldots, v_n/t_n\}$
 - v_i 's: distinct variables.
 - t_i 's: terms with $t_i \neq v_i$.
- \blacksquare Applying a substitution σ to an expression E means to replace each occurence of a variables v_i with the value t_i

Example:
$$E = p(X, Y, f(a))$$

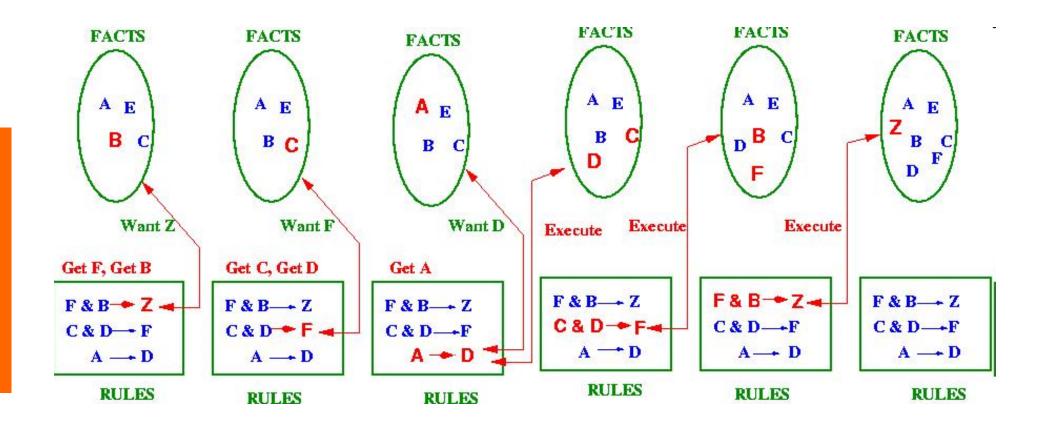
$$\sigma = \{X \mid b, Y \mid Z\}$$

$$E\sigma = p(b, Z, f(a))$$

E = father(peter,X)

$$\sigma$$
 = {X / mary}
 $E\sigma$ = father(peter,mary)

Illustrating Backward Chaining



Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/Al/l2.html

Inference Procedure for Logic Programming

Let resolvent be the query ?- Q₁, ..., Q_m

While resolvent is not empty do

- Choose a query literal Q_i from resolvent.
- **2.** Choose a renamed clause $H := B_1, ..., B_n$ from P such that Q_i and H unify with an most general unifier σ , i.e. $Q_i\sigma = H\sigma$
- 3. If no such Q_i and clause exist, then exit
- 4. Remove Q_i from the resolvent
- 5. Add $B_1, ..., B_n$ to the resolvent
- 6. Add σ to σ_{all}
- 7. Apply substitution σ to the *resolvent* and go to 1.
- 8. If *resolvent* is empty, **return** σ_{all} , else **return** *failure*.

¹ Renaming means that the variables in the clause get new unique identifiers

Corrected Inference Procedure for Logic Programming

Let resolvent be the query ?- Q₁, ..., Q_m

if resolvent is not empty then

- 1. Choose a query literal Q_i from resolvent.
- **2.** Choose a renamed¹ clause $H := B_1, ..., B_n$ from P such that Q_i and H unify with an most general unifier σ , i.e. $Q_i\sigma = H\sigma$
- 3. If no (more) such clause exist, then return failure
- 4. Remove Q_i from the resolvent
- 5. Add $B_1, ..., B_n$ to the resolvent
- 6. Add σ to σ_{all}
- 7. Apply substitution σ to the *resolvent* and call procedure recursively.
- 8. If recursive call return successfully, return success with σ_{all} , else backtrack, i.e. choose other alternatives in step 1 and 2.

else

return success with σ_{all}

¹ Renaming means that the variables in the clause get new unique identifiers

Two Choices in the Inference Procedure

There are two choices in Inference Procedure of Prolog:

- Step 1: Choice of a query literal Q_i from the resolvent
 - The inference procedure could select any literal without affecting the computation: If there exists a successful computation by choosing one literal, then there is a successful computation by choosing any other literal.
 - Prologs solution: leftmost goal
- Step 2: Choice of a clause:
 - This selection is non-deterministic. Depending on the selection
 - Affects computation: Choosing one clause might lead to success, while choosing some other might lead to failure.
 - Prolog 's solution: topmost clause
 - This means that the order of the clauses matters: clauses are selected in the order of appearance.
 - Backtracking: If a selected clause does not lead to success and there are alternative clauses then the next one is selected.

Adding Goal to Resolvent

- In step 5 of the Inference procedure the literals of the clause are added to the resolvent.
- Depending on whether the literals are added at the beginning or the end of the resolvent, we get two different strategies:
 - Adding the literals to the beginning of the resolvent gives depth-first search.
 - Adding the literals to the end of the resolvent gives breadthfirst search.

Prolog's Solution: Summary

- Choice of a query literal:
 - → **leftmost** literal first
- Choice of a clause
 - → Topmost clause first with backtracking
- Adding new goal to the resolvent
 - → At the beginning.

Unification

■ Two expressions Q and H unify if there exists a substitution σ for any variables in the expressions so that the expressions are made identical (Q σ = H σ)

Unification Rules

- A constant unifies only with itself
- Two structures unify if and only if
 - they have the same (function or) predicate symbol and the same number of arguments, and
 - the corresponding arguments unify recursively
- An unbound variable unifies with anything

Unifier

■ A substitution σ is a *unifier* of expressions E and F iff

$$E_{\sigma} = F_{\sigma}$$

- Example: Let *E* and *F* be two expressions:
 - $\bullet \quad E = f(x, b, g(z)),$
 - F = f(f(y), y, g(u)).

Then $\sigma = \{x \mid f(b), y \mid b, z \mid u\}$ is a unifier of E and F:

- $E\sigma = f(f(b), b, g(u)),$
- $F\sigma = f(f(b), b, g(u))$
- A unifier σ of E and F is most general iff is more general than any other unifier of E and F, i.e. for any other unifier ρ there exists a unifier τ such that $\rho = \tau \cdot \sigma$

Multiple Answers to a Query

- The inference procedure of Prolog computes one solution.
- The user can force the system to compute the next solution by typing a ";" (typing ";" is interpreted by the system as a fail and thus backtracking is started to compute an alternative solution)
- Example:

```
father(peter,mary).
father(peter,john).
father(peter,paul).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

?- sibling(X,Y).

X=mary, Y=mary;
X=mary, Y=john;
X=mary, Y=paul;
X=john, Y=mary
```


Negation as Failure

- Prolog allows a form of negation that is called negation as failure
- A negated query

not Q

is considered proved if the system fails to prove Q

■ Thus, the clause

alive(X):- not dead(X)

can be read as "Everyone is alive if not provably dead"

Declarative Reading vs Procedural Reading

- Logic Program: Finite set of clauses.
 - $H := B_1, ..., B_n$ $n \ge 0$
 - Example:
 - mortal(X):- human(X).
- Declarative reading:
 - H is implied by the conjunction of the B_i's.
 - Example: If someone is human then he/she is mortal.
- Procedural reading (backward chaining):
 - To answer the query ?-H, answer the conjunctive query ?-B₁, ..., Bn
 - Example: To prove that someone is mortal, prove whether he/she is a human
- All clauses with the same head predicate are
 - A definition (in declarative reading)
 - A procedure (in procedural reading)

The Cut Operator

- Under procedural reading, a logic program consists of a set of procedure
- Each procedure consists of a sequence of alternatives
- The inference procedure of Prolog computes all possible alternatives for a query
- The cut operator (written as "!") prevents backtracking. It is a special literal that is always true but that stops all other alternatives from being applied.

```
sibling(Y,Z) :- father(X,Y), !, father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).
```

Defining Negation as Failure with the Cut Operator

The cut operator can be used to define negation as failure

```
not(Q) :- Q, !, fail.
not(Q).
```

- If ?- Q can be proved then the query not(Q) fails.
- If Q cannot be proved, the second clause is applied which always succeeds.
- If Q can be proved the second clause must not be applied. This is assured by the cut: If Q can be proved, then the cut prevents backtracking.

Built-in Arithmetic

- In Prolog there is a set of built-in functions for arithmetics. To apply these function there exists a special predicate "is":
 - **X** is **Y** is true when X is equal to the value of Y.
- Built-in functions include: +, -, *, /, //, mod, (// performs integer division)
 - Using these functions we can compute a value for terms involving numbers.
- Example:
 - ♦ ?- X is 7+1.

Will give the answer x = 8

- The is Predicate works as follows:
 - First evaluate the right-hand argument (after the "is")
 - The result is is unified with the left-hand argument.
 - The values of all the variables on the right-hand side of is must be known for evaluation to succeed.

Comparison

Equality:

Pred	Description		Arithmetic Computation
=	unifiable	yes	no
is	is value of	first	second
=:=	same value	no	yes
==	identical	no	no

Other Comparisons:

X>Y	The value of X is greater than the value of Y	
X>=Y	The value of X is greater than or equal to the value of Y	
X < Y	The value of X is less than the value of Y	
X= <y< td=""><td>The value of X is less than or equal to the value of Y</td></y<>	The value of X is less than or equal to the value of Y	
$X = \setminus = Y$	The values of X and Y are unequal	