
Rule-Based Systems: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Remember: our first rule-based system

father(X,Y)	AND	father(Y,Z)		à		grandfather(X,Z)	
father(X,Y)	AND	mother(Y,Z)		à		grandfather(X,Z)	
mother(X,Y)	AND	father(Y,Z)		à		grandmother(X,Z)	
mother(X,Y)	AND	mother(Y,Z)		à		grandmother(X,Z)	
father(X,Y)	AND	father(X,Z)		à		sibling(Y,Z)	
mother(X,Y)	AND	mother(X,Z)		à		sibling(Y,Z)	

father(peter,mary)	
father(peter,john)	
mother(mary,mark)	
mother(jane,mary)	

The rules can be used to
•  Derive all grandparent and sibling relationships (forward chaining)
•  Answer questions about relationships (backward chaining)

KE&BI: Logic Programming 2

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Logic Programming

n  Logic programming is the use of
w  logic as a declarative representation language
w  Backward chaining as inference rule

n  Logic Programming is the basis of the programming language
PROLOG

3 KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 4

Logic Programs – A Sequence of Horn Clauses

n  The sentences of a logic program are Horn clauses
�  Facts: H
�  Rules: H ß B1 ∧ B2 ∧ … ∧ Bn

n  A Horn clause without any head H is called a query
w  Query: ß B1 ∧ B2 ∧ … ∧ Bn

n  Queries are not part of a logic program, they start
the inference

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Predicates and Literals

n  Predicates are the building blocks of clauses

n  Predicates have a name and arguments (parameters). Arity is the
number of arguments.

n  Predicates combine values which “makes sense” together (are
true)

n  Examples:
w  person(peter)
w  married(peter, cindy)
w  Appointment(1.3.2016, holger, “Kahn”, “Lecture KE”)
w  not female(holger)

n  Literals are predicates and negated predicates

5 KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Variables, Constants, and Data

n  Data are classical data which you know from programming languages
w  31
w  “Lecture KE”
w  21.3.2015

n  Constants are values
w  peter
w  cindy

n  Differences between constants and data
w  data: rich operations (+, -, ...) and comparisons (=, <, >, <=, …)
w  constants: only identity (=), but very quick!

n  Variables are placeholders for constants or data
w  likes(holger, X)

6 KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 7

Exercises

n  Write as a logic programme
w  john is a person
w  fhnw is a university
w  john is immatriculated at fhnw
w  A student is a person who is immatriculated at a university.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 8

PROLOG

n  PROLOG (= PROgramming in LOGic) is a programming
language based on Horn clauses

n  Syntax:
w  Prolog uses „:-“ instead of „ß“
w  Literals in the body are separated by comma „ ,“

(the comma is equivalent to the logical AND or „∧“)
w  Each clause ends with a period „.“
w  Variables are either

�  strings starting with capital letter: X, Person
�  strings starting with a underline: _x, _person

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 9

A Logic Programme in PROLOG Syntax

grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).

mother(mary,mark).
mother(jane,mary).

n  All Clauses with the same predicate in the head are
called the definition of the predicate

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 10

Reasoning in Logic Programming

n  INPUT:
w A logic programme P and
w  a query Q (?- Q1, Q2, …, Qm)

n  INFERENCE: Backward Chaining

n  OUTPUT:
w  If the query Q does not contain variables the answer is

�  yes if Q can be deduced from P
�  no, if Q cannot be deduced from P

w  If the query Q does contain variables the answer is
�  A substition σ for the variables in Q such Qσ can be deduced from P
�  no, if there is no substitution σ such that Qσ can be deduced from Q

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

A Logic Program and Queries

11 KE&BI: Logic Programming

grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).

mother(mary,mark).
mother(jane,mary).

Queries : ?- father(peter,john).
?- father(peter,X).
?- grandfather(peter,mark).
?- grandfather(peter,mary).
?- grandfather(peter,S).
?- sibling(X,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 12

Substitution

n  A substitution is a finite set of the form σ = {v1/ t1, . . . , vn / tn}
w  vi ’s: distinct variables.
w  ti ’s: terms with ti ≠ vi .

n  Applying a substitution σ to an expression E means to
replace each occurence of a variables vi with the value ti

n  Example: E = p(X, Y, f (a))
σ = {X / b, Y / Z}
Eσ = p(b, Z, f (a))

E = father(peter,X)
σ = {X / mary}
Eσ = father(peter,mary)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 13

Illustrating Backward Chaining

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/l2.html

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 14

Inference Procedure for Logic Programming
Let resolvent be the query ?- Q1, …, Qm

While resolvent is not empty do
1.  Choose a query literal Qi from resolvent.

2.  Choose a renamed1 clause H :- B1, …, Bn from P such that Qi
and H unify with an most general unifier σ , i.e. Qiσ = Hσ

3.  If no such Qi and clause exist, then exit
4.  Remove Qi from the resolvent
5.  Add B1, …, Bn to the resolvent

6.  Add σ to σall

7.  Apply substitution σ to the resolvent and go to 1.

8.  If resolvent is empty, return σall, else return failure.

1 Renaming means that the variables in the clause get new unique identifiers

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 15

Corrected Inference Procedure for Logic Programming
Let resolvent be the query ?- Q1, …, Qm

if resolvent is not empty then
1.  Choose a query literal Qi from resolvent.
2.  Choose a renamed1 clause H :- B1, …, Bn from P such that Qi and H unify with an most general unifier σ , i.e. Qiσ = Hσ
3.  If no (more) such clause exist, then return failure
4.  Remove Qi from the resolvent
5.  Add B1, …, Bn to the resolvent
6.  Add σ to σall

7.  Apply substitution σ to the resolvent and call procedure
recursively.

8.  If recursive call return sucessfully, return success with σall, else
backtrack, i.e. choose other alternatives in step 1 and 2.

else
 return success with σall

1 Renaming means that the variables in the clause get new unique identifiers

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 16

Two Choices in the Inference Procedure

There are two choices in Inference Procedure of Prolog:

n  Step 1: Choice of a query literal Qi from the resolvent
w  The inference procedure could select any literal without affecting the

computation: If there exists a successful computation by choosing one literal,
then there is a successful computation by choosing any other literal.

w  Prologs solution: leftmost goal
n  Step 2: Choice of a clause:

w  This selection is non-deterministic. Depending on the selection
w  Affects computation: Choosing one clause might lead to success, while

choosing some other might lead to failure.
w  Prolog‘s solution: topmost clause
w  This means that the order of the clauses matters: clauses are selected in the

order of appearance.
w  Backtracking: If a selected clause does not lead to success and there are

alternative clauses then the next one is selected.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 17

Adding Goal to Resolvent

n  In step 5 of the Inference procedure the literals of the clause
are added to the resolvent.

n  Depending on whether the literals are added at the beginning
or the end of the resolvent, we get two different strategies:
w  Adding the literals to the beginning of the resolvent gives

depth-first search.
w  Adding the literals to the end of the resolvent gives breadth-

first search.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 18

Prolog‘s Solution: Summary

n  Choice of a query literal:
à leftmost literal first

n  Choice of a clause
à Topmost clause first - with backtracking

n  Adding new goal to the resolvent
à At the beginning.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 19

Unification

n  Two expressions Q and H unify if there exists a substitution σ
for any variables in the expressions so that the expressions
are made identical (Qσ = Hσ)

Unification Rules

n  A constant unifies only with itself

n  Two structures unify if and only if
w  they have the same (function or) predicate symbol and the

same number of arguments, and
w  the corresponding arguments unify recursively

n  An unbound variable unifies with anything

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 20

Unifier

n  A substitution σ is a unifier of expressions E and F iff

 Eσ= Fσ

n  Example: Let E and F be two expressions:
w  E = f (x, b, g(z)),
w  F = f (f (y), y, g(u)).

 Then σ = {x / f (b), y / b, z / u} is a unifier of E and F:
w  Eσ = f (f (b), b, g(u)),
w  Fσ = f (f (b), b, g(u)

n  A unifier σ of E and F is most general iff is more general than any other
unifier of E and F, i.e. for any other unifier ρ there exists a unifier τ such
that ρ = τ ° σ

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 21

Multiple Answers to a Query

n  The inference procedure of Prolog computes one solution.

n  The user can force the system to compute the next solution by typing a „;“
(typing „;“ is interpreted by the system as a fail and thus backtracking is
started to compute an alternative solution)

n  Example:

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).
father(peter,paul).

?- sibling(X,Y).
X=mary, Y=mary;
X=mary, Y=john;
X=mary, Y=paul;
X=john, Y=mary

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 22

Negation as Failure

n  Prolog allows a form of negation that is called negation as
failure

n  A negated query

 not Q

 is considered proved if the system fails to prove Q

n  Thus, the clause

 alive(X) :- not dead(X)

 can be read as „Everyone is alive if not provably dead“

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 23

Declarative Reading vs Procedural Reading

n  Logic Program: Finite set of clauses.
w  H :- B1, …, Bn n ≥ 0
w  Example:

�  mortal(X) :- human(X).

n  Declarative reading:
w  H is implied by the conjunction of the Bi ’s.
w  Example: If someone is human then he/she is mortal.

n  Procedural reading (backward chaining):
w  To answer the query ?-H, answer the conjunctive query ?-B1, …, Bn
w  Example: To prove that someone is mortal, prove whether he/she is a

human

n  All clauses with the same head predicate are
w  A definition (in declarative reading)
w  A procedure (in procedural reading)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 24

The Cut Operator

n  Under procedural reading, a logic program consists of a set of
procedure

n  Each procedure consists of a sequence of alternatives

n  The inference procedure of Prolog computes all possible
alternatives for a query

n  The cut operator (written as „!“) prevents backtracking. It is a
special literal that is always true but that stops all other
alternatives from being applied.

sibling(Y,Z) :- father(X,Y), !, father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 25

Defining Negation as Failure with the Cut Operator

n  The cut operator can be used to define negation as failure

n  If ?- Q can be proved then the query not(Q) fails.

n  If Q cannot be proved, the second clause is applied which
always succeeds.

n  If Q can be proved the second clause must not be applied.
This is assured by the cut: If Q can be proved, then the cut
prevents backtracking.

not(Q) :- Q, !, fail.

not(Q).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 26

Built-in Arithmetic

n  In Prolog there is a set of built-in functions for arithmetics. To apply these function
there exists a special predicate „is“:

 X is Y is true when X is equal to the value of Y.

n  Built-in functions include: +, –, *, /, //, mod, (// performs integer division)
w  Using these functions we can compute a value for terms involving numbers.

n  Example:
w  ?- X is 7+1.

 Will give the answer X = 8

n  The is Predicate works as follows:
w  First evaluate the right-hand argument (after the „is“)
w  The result is is unified with the left-hand argument.
w  The values of all the variables on the right-hand side of is must be known for

evaluation to succeed.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 27

Comparison

Equality:

Other Comparisons:

KE&BI: Logic Programming

