Forward Chaining vs. Backward Chaining

Forward Chaining vs. Backward Chaining

Logical Rules can be applied in two directions

PROLOG

- Backward chaining
 - start with the desired conclusion(s)
 - work backwards to find supporting facts
 - corresponds to modus tolens
 - goal-directed

Tables

- Forward chaining
 - Starts from the facts
 - apply rules to find all possible conclusions
 - corresponds to modus ponens
 - data driven

Example of a Declarative Knowledge Base

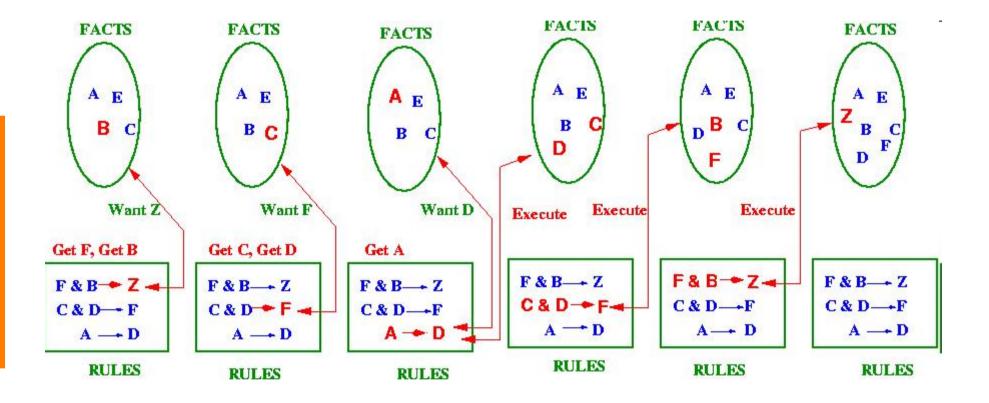
```
Father(peter,mary)
Father(peter,john)
Mother(mary,mark)
Mother(jane,mary)
```

```
Father(X,Y) AND Father(Y,Z) \rightarrow Grandfather(X,Z)

Father(X,Y) AND Mother(Y,Z) \rightarrow Grandfather(X,Z)

Mother(X,Y) AND Father(Y,Z) \rightarrow Grandmother(X,Z)

Mother(X,Y) AND Mother(Y,Z) \rightarrow Grandmother(X,Z)

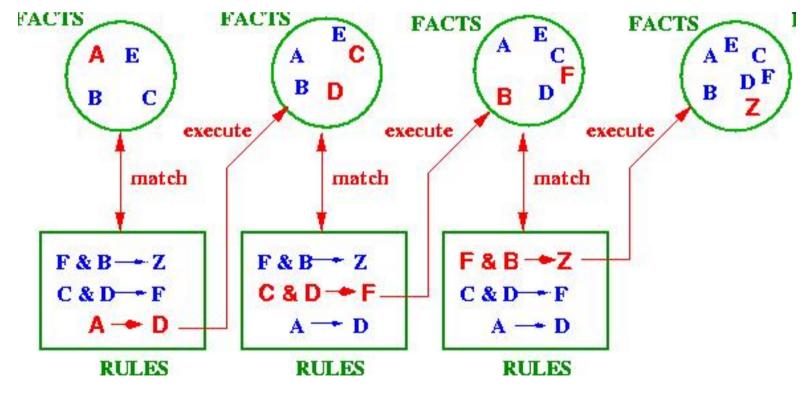

Father(X,Y) AND Father(X,Z) \rightarrow Sibling(Y,Z)

Mother(X,Y) AND Mother(X,Z) \rightarrow Sibling(Y,Z)
```

The rules can be used to

- Derive all grandparent and sibling relationships (forward chaining)
- Answer questions about relationships (backward chaining)

Illustrating Backward Chaining

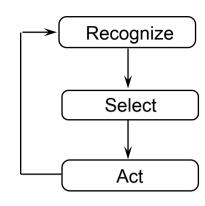


Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/Al/l2.html

Illustration Forward Chaining

Goal state: Z

Termination condition: stop if Z is derived or no further rule can be applied


Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/Al/l2.html

Forward Chaining: Deriving ground Facts

- Usually for forward chaining the facts are ground, i.e. they do not contain variables
- To ensure that the derived facts are ground, all the variables which occur in the consequence of the rule must occur in the antecedents of the rule
- Unification is thus restricted to matching (one of the expressions is ground):
 - The condition can contain variables
 - The matching fact does not contain variables

Forward Chaining Procedure: Recognise – Select – Act Cycle

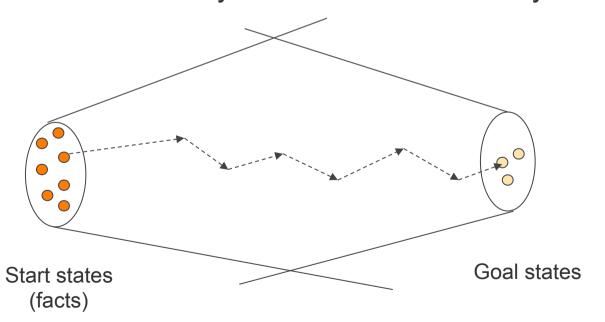
Let the fact base consist of facts $FB = \{F_1, ..., F_n\}$

 Recognise: Match the conditions of the rules against the facts of the fact base, i.e. find all rules

 C_1 and C_2 and ... and $C_m \rightarrow H$

such that the conditions $C_1, C_2, ..., C_m$ can be unified with facts $F_1, F_2, ..., F_m$ with unifier σ

(the set of applicable rules is called conflict set)

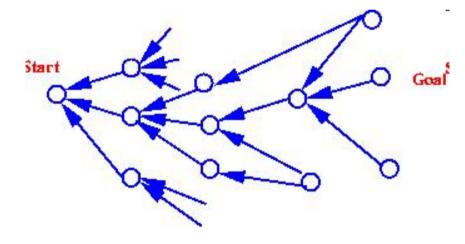

- 2. **Select**: If there is more than one rule that can be applied, **choose** one to apply. Stop if no rule is applicable
- 3. Act: Apply the chosen rule by adding adding H σ to the fact base, i.e. FB = FB \cup {H σ }
- 4. Stop if termination condition holds, otherwise and go to 1

Forward Chaining Strategies

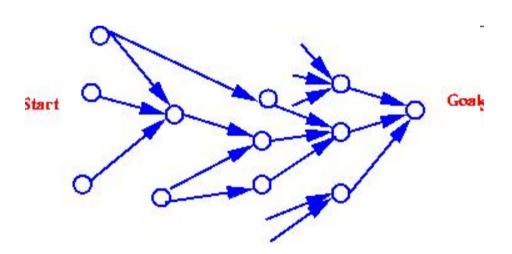
- Forward chaining computes all the facts that can be derived from the knowledge base
- Forward chaining strategies differ in step "Select". Here are some examples of strategies:
 - Apply the rules sequentially
 - Randomly select a rule
 - Apply more specific rules first
 - Prefer rules where conditions match a recently derived fact
 - Derive consequences of a set of starting facts: Only apply rules where at least one condition matches either with a starting fact or a derived fact
 - Fact base contains facts that are generally true, e.g. insurance product
 - Starting facts describe a concrete situation, e.g. customer data

Choosing Forward or Backward Chaining

- Backward Chaining
 - If you already know what you are looking for
- Forward Chaining
 - If you don't necessarily know the final state of your solution


Decision Criteria for Forward or Backward Reasoning

- More possible goal states or start states?
 - Move from smaller set of states to the larger
- Is Justification of Reasoning required?
 - Prefer direction that corresponds more closely to the way users think
- What kind of events triggers problem-solving?
 - If it is arrival of a new fact, forward chaining makes sense.
 - If it is a query to which a response is required, backward chaining is more natural.
- In which direction is branching factor greatest?
 - Go in direction with lower branching factor


Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/Al/l2.html

Branching Factor

Backward chaining more appropriate

Forward chaining more appropriate

Forward or Backward Chaining?

Which reasoning strategy do you regard as appropriate in the following scenarios:

- Diagnosis of a machine defect. Rules have symptoms in the antecedent and defect in the conclusion. Given a set of symptoms derive the reason for the defect
- Check whether a patient is at risk for breast cancer. Rules have risks in antecedent and possible diseases in the head, e.g. "smoking -> lung cancer"
- Proving integrity constraints. Rules specify conditions when a database is inconsistent. Rules are checked at every update
- Check credit card accounts for possible occurrence of fraud as soon as a payment is made.