
Rule-Based Systems: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Remember: our first rule-based system

father(X,Y) AND father(Y,Z) à grandfather(X,Z)
father(X,Y) AND mother(Y,Z) à grandfather(X,Z)
mother(X,Y) AND father(Y,Z) à grandmother(X,Z)
mother(X,Y) AND mother(Y,Z) à grandmother(X,Z)
father(X,Y) AND father(X,Z) à sibling(Y,Z)
mother(X,Y) AND mother(X,Z) à sibling(Y,Z)

father(peter,mary)
father(peter,john)
mother(mary,mark)
mother(jane,mary)

The rules can be used to
• Derive all grandparent and sibling relationships (forward chaining)
• Answer questions about relationships (backward chaining)

KE&BI: Logic Programming 2

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Logic Programming

n Logic programming is the use of
w logic as a declarative representation language
w Backward chaining as inference rule

n Logic Programming is the basis of the programming language
PROLOG

3KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 4

Logic Programs – A Sequence of Horn Clauses

n The sentences of a logic program are Horn clauses
� Facts: H
� Rules: H ß B1 Ù B2 Ù … Ù Bn

n A Horn clause without any head H is called a query
w Query: ß B1 Ù B2 Ù … Ù Bn

n Queries are not part of a logic program, they start
the inference

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Predicates and Literals

n Predicates are the building blocks of clauses

n Predicates have a name and arguments (parameters). Arity is the
number of arguments.

n Predicates combine values which “makes sense” together (are
true)

n Examples:
w person(peter)
w married(peter, cindy)
w appointment(1.3.2016, holger, “AB1”, “Lecture KE”)
w not female(holger)

n Literals are predicates and negated predicates

5KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Variables, Constants, and Data

n Data are classical data which you know from programming languages
w 31
w “Lecture KE”
w 21.3.2015

n Constants (symbols) are values
w peter
w cindy

n Differences between constants and data
w data: rich operations (+, -, ...) and comparisons (=, <, >, <=, …)
w constants: only identity (=), but very quick!

n Variables are placeholders for constants or data
w likes(holger, X)

6KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 7

Exercises (1/2)

n Write as a logic programme
w john is a person
w peter and mary are persons
w fhnw is a university
w john is matriculated at fhnw
w A student is a person who is matriculated at a university.
w Is john a student?
w Is peter a student?

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 8

Exercises (2/2)

n Write as a logic programme
w knut is a person
w «KEBI» is a class
w classes are taught by teachers
w john attends to class «KEBI»
w students are attending to classes
w Is john a student?
w knut teaches «KEBI»
w Is knut a teacher?

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 9

PROLOG

n PROLOG (= PROgramming in LOGic) is a programming
language based on Horn clauses

n Syntax:
w Prolog uses „:-� instead of „ß�

w Literals in the body are separated by comma „ ,�
(the comma is equivalent to the logical AND or „Ù“)

w Each clause ends with a period „.�
w Variables are either

� strings starting with capital letter: X, Person
� strings starting with a underline: _x, _person

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 10

A Logic Programme in PROLOG Syntax

grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).

mother(mary,mark).
mother(jane,mary).

n All Clauses with the same predicate in the head are
called the definition of the predicate

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 11

Reasoning in Logic Programming

n INPUT:
w A logic programme P and
w a query Q (?- Q1, Q2, …, Qm)

n INFERENCE: Backward Chaining

n OUTPUT:
w If the query Q does not contain variables the answer is

� yes if Q can be deduced from P
� no, if Q cannot be deduced from P

w If the query Q does contain variables the answer is
� A substition s for the variables in Q such Qs can be deduced from P
� no, if there is no substitution s such that Qs can be deduced from Q

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

A Logic Program and Queries

12KE&BI: Logic Programming

grandfather(X,Z) :- father(X,Y), father(Y,Z).
grandfather(X,Z) :- father(X,Y), mother(Y,Z).

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).
mother(mary,mark).
mother(jane,mary).

Queries : ?- father(peter,john).
?- father(peter,X).
?- grandfather(peter,mark).
?- grandfather(peter,mary).
?- grandfather(peter,S).
?- sibling(X,Y).

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 13

Substitution

n A substitution is a finite set of the form s = {v1/ t1, . . . , vn / tn}
w vi �s: distinct variables.

w ti �s: terms with ti ≠ vi .

n Applying a substitution s to an expression E means to
replace each occurence of a variables vi with the value ti

n Example: E = p(X, Y, f (a))
s = {X / b, Y / Z}
Es = p(b, Z, f (a))

E = father(peter,X)
s = {X / mary}
Es = father(peter,mary)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 14

Illustrating Backward Chaining

Source: Kerber (2004), http://www.cs.bham.ac.uk/~mmk/Teaching/AI/l2.html

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 15

Inference Procedure for Logic Programming
Let resolvent be the query ?- Q1, …, Qm

While resolvent is not empty do
1. Choose a query literal Qi from resolvent.
2. Choose a renamed1 clause H :- B1, …, Bn from P such that

Qi and H unify with an most general unifier s , i.e. Qis = Hs

3. If no such Qi and clause exist, then backtrack
4. Remove Qi from the resolvent
5. Add B1, …, Bn to the resolvent
6. Add s to sall

7. Apply substitution s to the resolvent and go to 1.
If resolvent is empty, return sall, else return failure.

1 Renaming means that the variables in the clause get new unique identifiers

KE&KT: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Backtracking

n Record any decision
(choose) and its
alternative

n If backtracking, then go
back to the last decision
and try another option

n When backtracking then
roll back to the former
situation (esp. for
resolvent and sall)

16KE&KT: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache

Backtracking

n Record any decision
(choose) and its
alternative

n If backtracking, then go
back to the last decision
and try another option

n When backtracking then
roll back to the former
situation (esp. for
resolvent and sall)

17KE&KT: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 19

Two Choices in the Inference Procedure

There are two choices in Inference Procedure of Prolog:

n Step 1: Choice of a query literal Qi from the resolvent
w The inference procedure could select any literal without affecting the

computation: If there exists a successful computation by choosing one literal,
then there is a successful computation by choosing any other literal.

w Prologs solution: leftmost goal; (normally not backtracked)
n Step 2: Choice of a clause:

w This selection is non-deterministic. Depending on the selection
w Affects computation: Choosing one clause might lead to success, while

choosing some other might lead to failure.
w Prolog�s solution: topmost clause
w This means that the order of the clauses matters: clauses are selected in the

order of appearance.
w Backtracking: If a selected clause does not lead to success and there are

alternative clauses then the next one is selected.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 20

Adding Goal to Resolvent

n In step 5 of the Inference procedure the literals of the clause
are added to the resolvent.

n Depending on whether the literals are added at the beginning
or the end of the resolvent, we get two different strategies:
w Adding the literals to the beginning of the resolvent gives

depth-first search.
w Adding the literals to the end of the resolvent gives breadth-

first search.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 21

Prolog�s Solution: Summary

n Choice of a query literal:
à leftmost literal first

n Choice of a clause
à Topmost clause first - with backtracking

n Adding new goal to the resolvent
à At the beginning.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 22

Unification

n Two expressions Q and H unify if there exists a substitution s
for any variables in the expressions so that the expressions
are made identical (Qs = Hs)

Unification Rules

n A constant unifies only with itself

n Two structures unify if and only if
w they have the same (function or) predicate symbol and the

same number of arguments, and
w the corresponding arguments unify recursively

n An unbound variable unifies with anything

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 23

Unifier

n A substitution s is a unifier of expressions E and F iff

Es= Fs

n Example: Let E and F be two expressions:
w E = f (x, b, g(z)),
w F = f (f (y), y, g(u)).

Then s = {x / f (b), y / b, z / u} is a unifier of E and F:
w Es = f (f (b), b, g(u)),
w Fs = f (f (b), b, g(u)

n A unifier s of E and F is most general iff is more general than any other
unifier of E and F, i.e. for any other unifier r there exists a unifier t such
that r = t � s

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 24

Multiple Answers to a Query

n The inference procedure of Prolog computes one solution.

n The user can force the system to compute the next solution by typing a „;�
(typing „;� is interpreted by the system as a fail and thus backtracking is
started to compute an alternative solution)

n Example:

sibling(Y,Z) :- father(X,Y), father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

father(peter,mary).
father(peter,john).
father(peter,paul).

?- sibling(X,Y).
X=mary, Y=mary;
X=mary, Y=john;
X=mary, Y=paul;
X=john, Y=mary

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 25

Negation as Failure

n Prolog allows a form of negation that is called negation as
failure

n A negated query

not Q

is considered proved if the system fails to prove Q

n Thus, the clause

alive(X) :- not dead(X)

can be read as „Everyone is alive if not provably dead�

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 26

Declarative Reading vs Procedural Reading

n Logic Program: Finite set of clauses.
w H :- B1, …, Bn n ≥ 0
w Example:

� mortal(X) :- human(X).
n Declarative reading:

w H is implied by the conjunction of the Bi �s.
w Example: If someone is human then he/she is mortal.

n Procedural reading (backward chaining):
w To answer the query ?-H, answer the conjunctive query ?-B1, …, Bn
w Example: To prove that someone is mortal, prove whether he/she is a

human
n All clauses with the same head predicate are

w A definition (in declarative reading)
w A procedure (in procedural reading)

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 27

The Cut Operator

n Under procedural reading, a logic program consists of a set
of procedure

n Each procedure consists of a sequence of alternatives

n The inference procedure of Prolog computes all possible
alternatives for a query

n The cut operator (written as „!�) prevents backtracking. It is a
special literal that is always true but that stops all other
alternatives from being applied.

sibling(Y,Z) :- father(X,Y), !, father(X,Z).
sibling(Y,Z) :- mother(X,Y), mother(X,Z).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 28

Defining Negation as Failure with the Cut Operator

n The cut operator can be used to define negation as failure

n If ?- Q can be proved then the query not(Q) fails.

n If Q cannot be proved, the second clause is applied which
always succeeds.

n If Q can be proved the second clause must not be applied.
This is assured by the cut: If Q can be proved, then the cut
prevents backtracking.

not(Q) :- Q, !, fail.

not(Q).

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 29

Built-in Arithmetic

n In Prolog there is a set of built-in functions for arithmetics. To apply these function
there exists a special predicate „is�:

X is Y is true when X is equal to the value of Y.

n Built-in functions include: +, –, *, /, //, mod, (// performs integer division)
w Using these functions we can compute a value for terms involving numbers.

n Example:
w ?- X is 7+1.

Will give the answer X = 8
n The is Predicate works as follows:

w First evaluate the right-hand argument (after the „is�)
w The result is is unified with the left-hand argument.
w The values of all the variables on the right-hand side of is must be known for

evaluation to succeed.

KE&BI: Logic Programming

© Prof. Dr. K. Hinkelmann, Prof. Dr. H. Wache 30

Comparison

Equality:

Other Comparisons:

KE&BI: Logic Programming

