

Machine Learning and Knowledge Engineering

Knut Hinkelmann

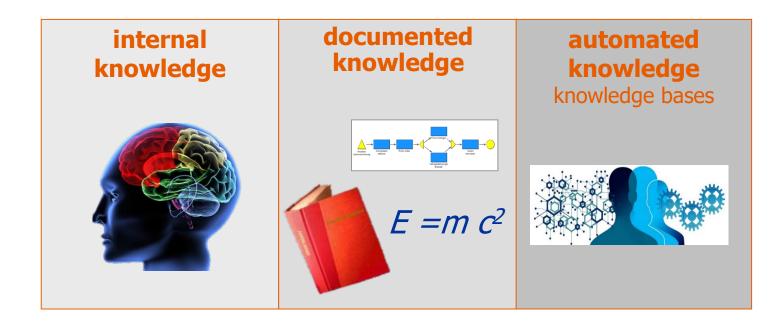
Prof. Dr. Knut Hinkelmann

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Knowledge Engineering

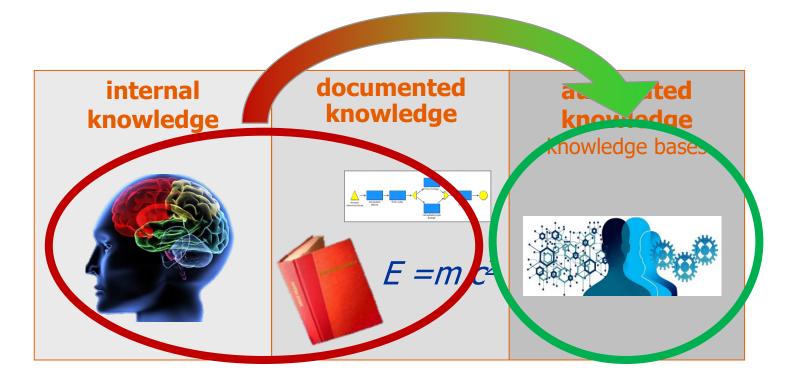
Knowledge

n



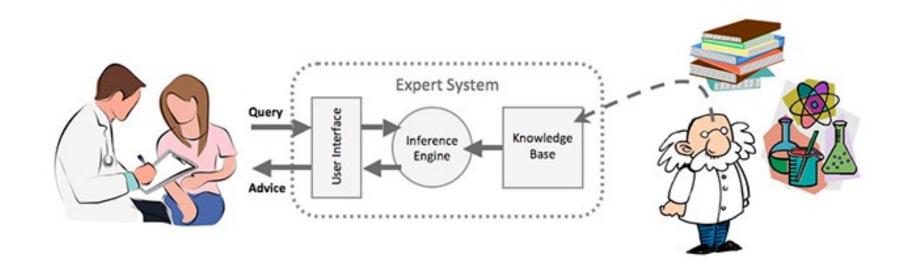
Knowledge

Knowledge Engineering: Human-Created Knowledge Base

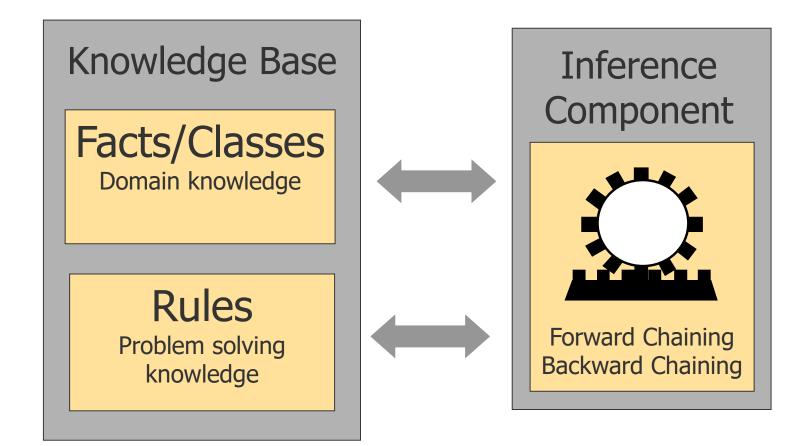


Knowledge

Knowledge-Based Systems (Expert Systems)



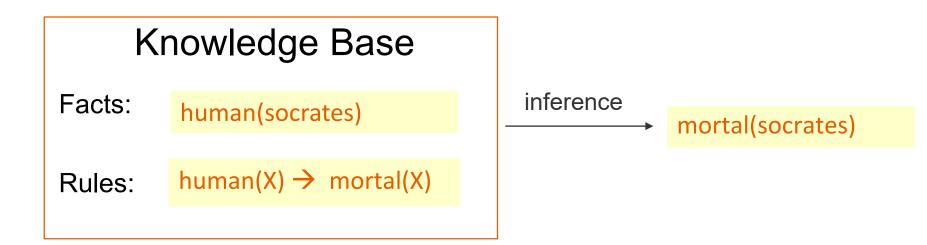
Knowledge-Based Systems (Rules & Facts)



Knowledge Bases and Inference

- Inference: Making implicit knowledge explicit by generating new facts from knowledge
- Example:

From the knowledge that **socrates is a human** and that **all humans are mortal**, one can conclude that **socrates is mortal**



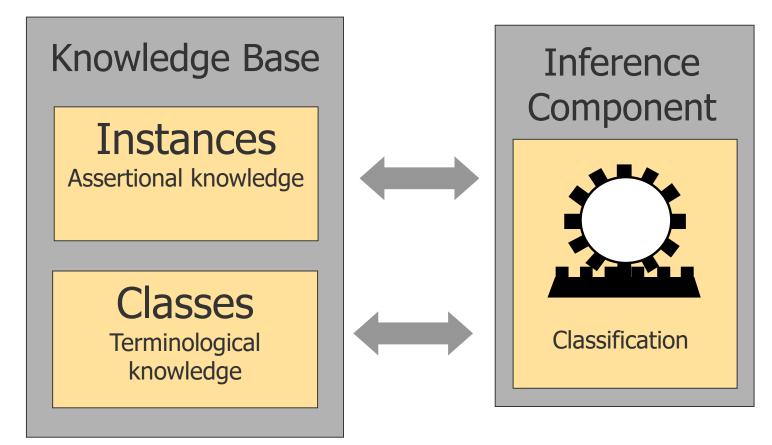
Inference

n

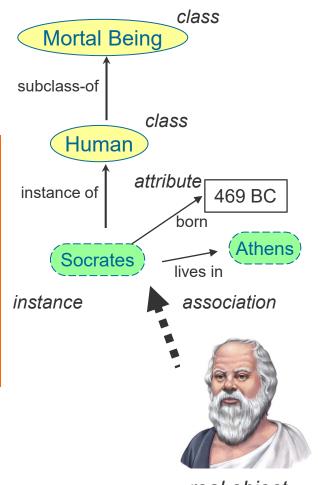
What knowledge can be derived from this knowledge base?

Knowledge Base					
Facts:	father(peter,mary) father(peter,john) mother(mary,mark) mother(jane,mary)				
Rules:	father(X,Y) \rightarrow parent(X,Y) mother(X,Y) \rightarrow parent(X,Y) father(X,Y) AND parent(Y,Z) \rightarrow grandfather(X,Z) mother(X,Y) AND parent(Y,Z) \rightarrow grandmother(X,Z) parent(X,Y) AND parent(X,Z) \rightarrow sibling(Y,Z)				

Knowledge-Based Systems (Classes and Instances)



Domain Concepts, Instances and Relations



real object

There are two kinds of concepts:

- classes
- instances (facts)
- There are different kinds of relations
 - generalisation ("is a")
 - between classes (subclass of)
 - between instance and class (instance of)

associations/properties

- any other kind of relationship
- Attributes can be regarded as properties whose value is not an instance but is of a primitive type (number, string).

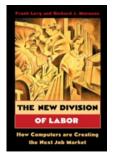
Machine Learning and

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Machine Learning

Machine Learning and Knowledge

Self-driving Cars

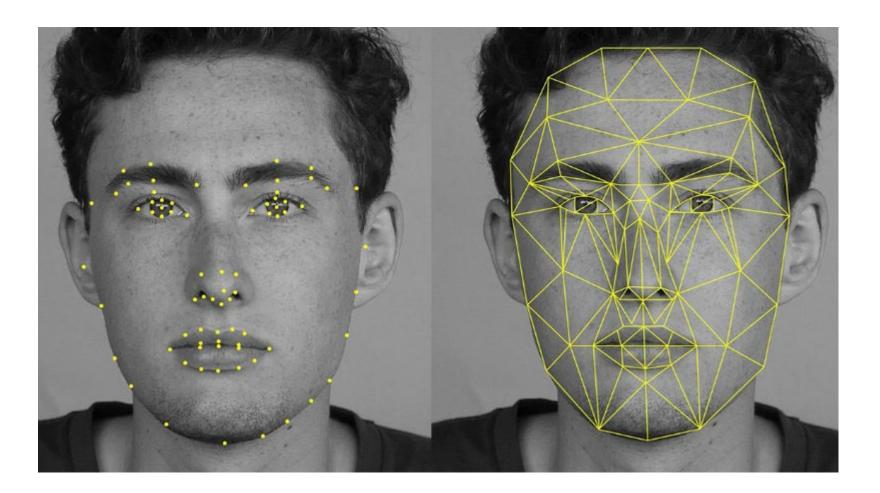


n

"... it is hard to imagine discovering the set of rules that can replicate the driver's behavior." (Levy & Murnane 2006)

Machine

Face Recognition



Machine Learning and Knowledge

Spam Filter

n

Copyright 2003 by Randy Glasbergen. www.glasbergen.com



"It's not the most sophisticated Spam blocker I've tried, but it's the only one that works!"

Machine

Translation

"The spirit was willing, but the flesh was weak"

"Out of sight, out of mind." . . .

"The vodka was good, but the meat was rotten"

"Blind and insane."

https://www.spopes.com/language/misylate/machine.asp

15

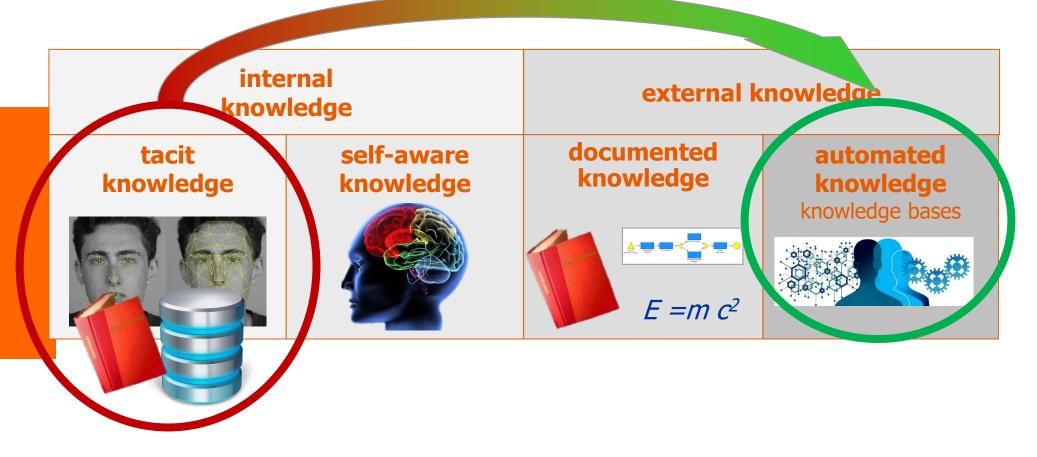
Machine

Knowledge

n

internal k	nowledge	external k	nowledge
tacit knowledge	self-aware knowledge	documented knowledge	automated knowledge knowledge bases
		$E = m c^{2}$	Knowledge bases

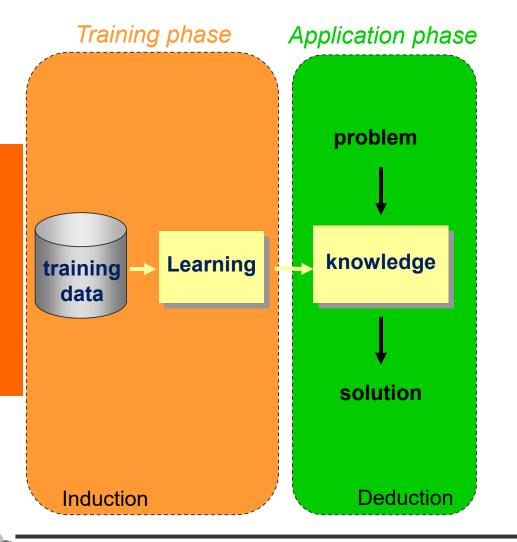
Machine Learning: Learning (Tacit) Knowledge from Data



Machine Learning and

Knowledge

Machine Learning: General Idea



Training

- Collect data for the problem
- Use the data to learn how to solve the type of problem
- Result: Knowledge base

Application

 Use the learned knowledge for new problems

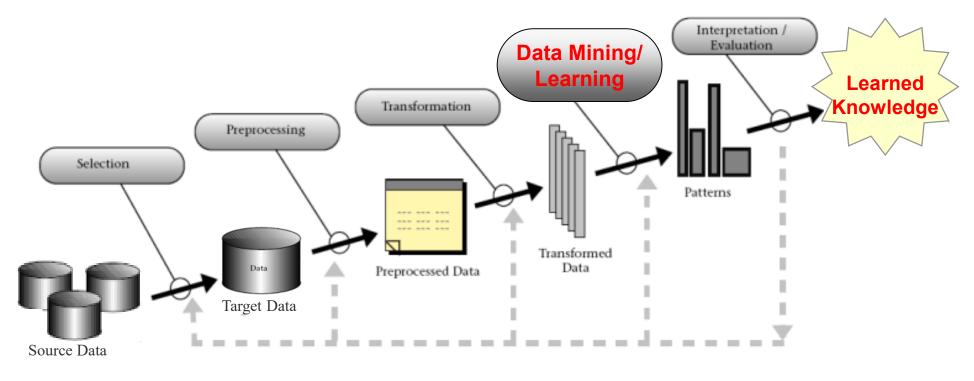
Machine Learning vs. Knowledge-based Systems

Knowledge-based System Input Data Inference Output Component **Rules Machine Learning** Input Data Learning Rules Component (Output)

Source: Vibhav Gogate, UT Dallas

Machine Learning in Context

 Machine Learning (Data Mining) is a step to discover knowledge in data



Knowledge is then used in processes and applications.

(Fayyad et al., 1996)

Types of Learning

- The learning method depends on the kind of data that we have at our disposal
 - The data contains sets of inputs and corresponding outputs: (i,o)
 - No prior knowledge: The data contains only the inputs i: output has to be determined
 - The data contains sets of inputs without corresponding «correct» output, but we can get some measure of the quality of an output o for input i. Rewards for good output quality.

Supervised Learning: Application Examples

	Input <i>i</i>	Output o
Spam filtering	An email	{spam, non-spam}
Face recognition	An image	Identified faces
Machine translation	A sentence in language A	A sentence in language B
Speech recognition	A speech signal	A (text) sentence
Fraud detection	A financial transaction	{fraud, non-fraud}
Robot motion	Sensory data	Motor control

Machine

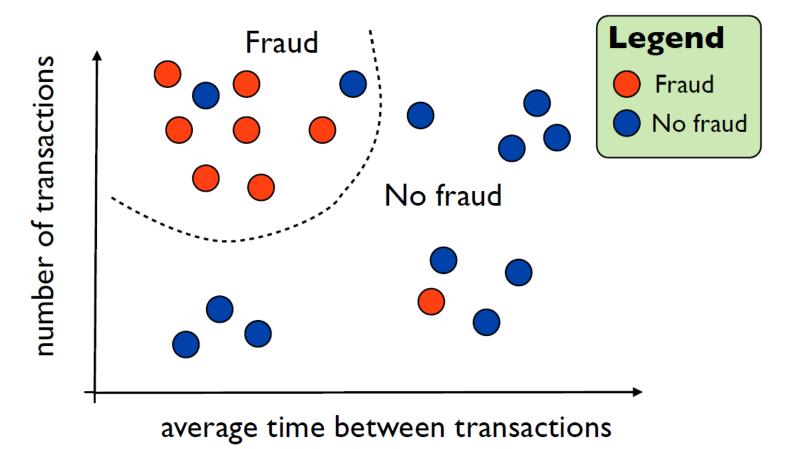
Knowledge

and

(Lison Legrining

Supervised Learning

Example: Classification

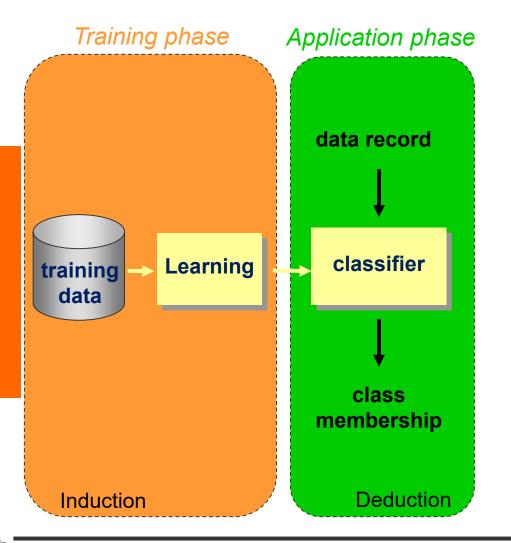


Classification

- Assign objects (input) to known classes (output)
- Examples:
 - credit assessment Input: customers of a bank Classes: credit worthy not credit worthy
 - Spam filtering

 Input: email
 Classes: spam
 non-spam
 - optical character recognition (OCR) Input: scanned pixel image Classes: ASCII characters

Training and Application Phase

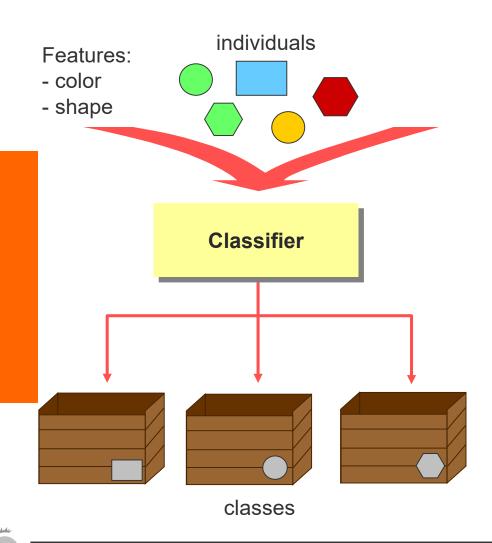


- Training: Learning the classification criteria
 - Given: sample set of training data records
 - Result: Decision logic to determine class from values of input attributes (decision tree, rules, model)

Application: Classification

 Goal: assign a class to previously unseen records of input data as accurately as possible

Supervised Learning: Classification Criteria



The classifier decides, which individual belongs to which class

Problem:

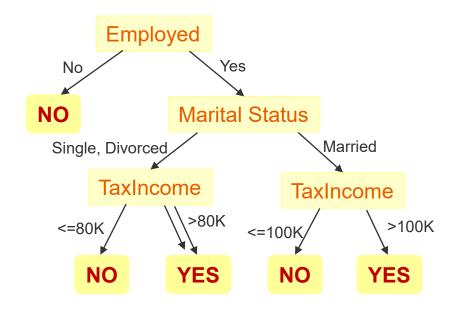
- Input has different features
- The criteria for the decision are not always obvious
- Supervised Learning:
 - Learn the classification criteria from known examples
 - Criteria = relevant features and their valures

Example for Supervised Learning

Problem: When to give credit

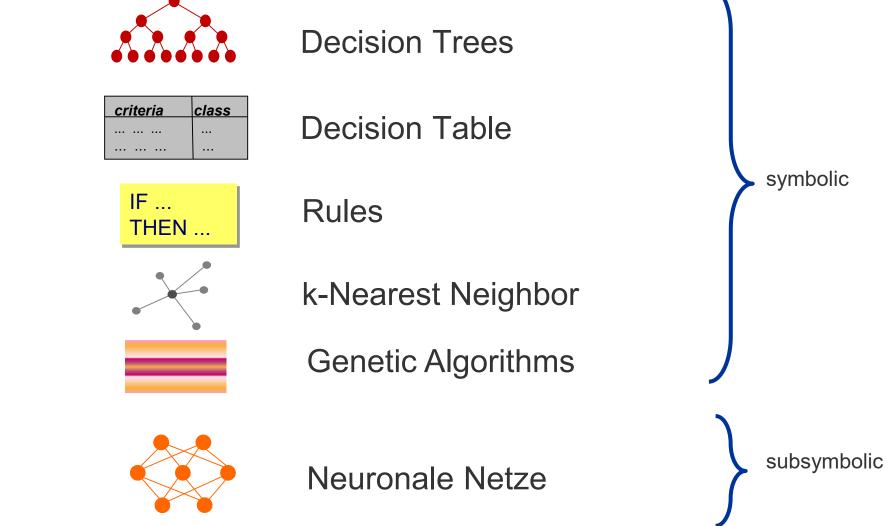
Tid	Employed	Marital Status	Taxable Income	accept
1	No	Single	125K	No
2	Yes	Married	160K	Yes
3	Yes	Single	70K	Νο
4	No	Married	120K	Νο
5	Yes	Divorced	95K	Yes
6	Yes	Married	60K	No
7	No	Divorced	220K	No
8	Yes	Single	85K	Yes
9	Yes	Married	95K	No
10	Yes	Single	90K	Yes

Training Data



Credit V	Vorthiness			
	Employed	Employed Marital Status		Accept
	Yes, No	Single, Divorced, Married	Integer	Yes, No
1	No			No
2	Yes	Single	> 80K	Yes
3	Yes	Divorced	> 80K	Yes
4	Yes	Single	≤ 80K	No
5	Yes	Divorced	≤ 80K	No
6	Yes	Married	> 100K	Yes
7	Yes	Married	≤ 100K	No

Knowledge Base: Decision Tree, Decision



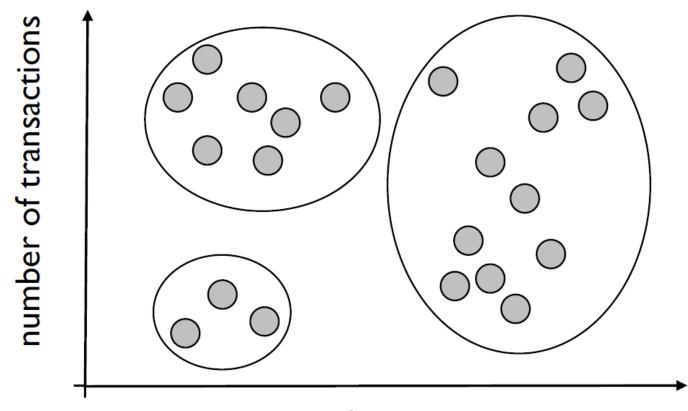
Unsupervised Learning

- Sometimes, we don't have access to any output value o, we simply have a collection of input examples i
- Input: data sets without corresponding output values.
- Objective: learn the underlying patterns of our data
 - Are there any *correlations* between features?
 - Can we *cluster* our data set in groups which behave similarly?

<u>(Lison 2012</u>

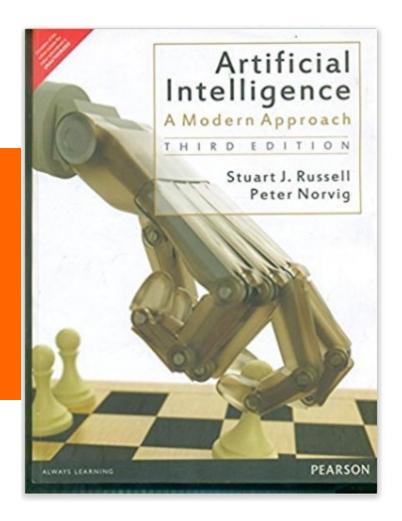
Unsupervised Learning

Example: Clustering (= identify new classes)



average time between transactions

Example: Recommender Systems



Customers who bought this item also bought

Deep Learning (Adaptive Computation and Machine Learning series) > Ian Goodfellow

DEEP LEARNING

Hands-On Machine Learning with Scikit-Learn and TensorFlow:... > Aurélien Géron

Pattern Recognition and Machine Learning (Information Science... > Christopher M. Bishop

Reinforcement Learning

- Sometime we don't have direct access to «the» correct output o for an input i
- But we can get a measure of «how good/bad» an output is
 - Often called the *reward* (can be negative or positive)
- The goal of the agent is to learn the behaviour that maximises its expected cumulative reward over time
 - To learn how to flip pancakes, the reward could for instance be +3 if the pancake is flipped, -1 if the pancake stays in the pan, and -5 if it falls

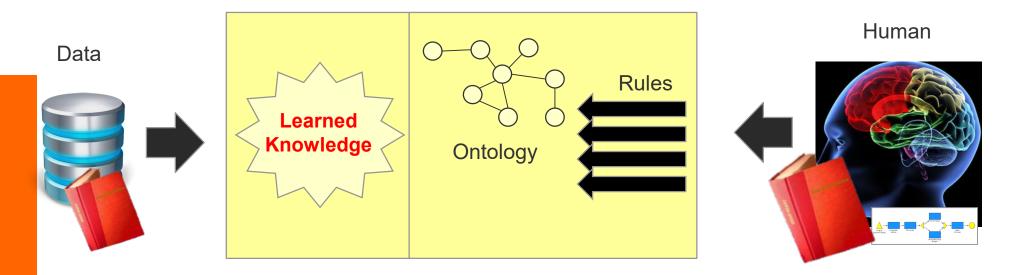
University of Applied Sciences and Arts Northwestern Switzerland School of Business

Combining Machine Learning and Knowledge Engineering

Machine Learning and Knowledge

Knowledge in Intelligent Systems

Machine Learning Knowledge Engineering



- Tacit or unknown knowledge
- Adaptable to new situations

- Knowledge we are aware of
- Knowledge that must be correct

Machine Learning

Autonomous Driving

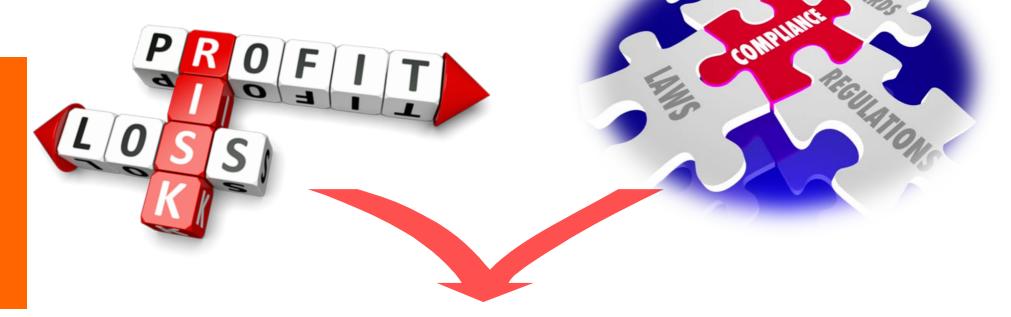
Machine Learning:
 Driving Behaviour

Knowledge Engineering: Traffic Rules

Machine Learning and 35 nowledge Engineering

Eligibility Decision

Example: Insurance



Accept yes/no

Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (1/2)

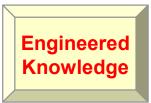
Example: Application of health insurance

Machine Learning: data records about risks of clients

Age	surgery	docvisit	allergy	med	disieases	bmi	class
20	0	2	no	no	cholesterol	28	low
21	0	4	no	no	no	23	low
49	2	12	yes	yes	heart	34	high
22	0	3	no	no	no	23	low
51	2	2	yes	yes	diabetes	26	high
52	2	8	no	no	heart	31	high
52	0	3	yes	no	no	22	low
52	2	12	yes	yes	diabetes	27	high
52	0	11	yes	no	cholesterol	29	high
23	0	3	no	no	no	23	low

Engineered knowledge: eligibility and compliance

Applicants from Switzerland are eligible. A person younger than 21 year is not able to apply



...

Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (2/2)

Examples of learned rules:

risk (Person, high) :-	age(Person,A), A > 50,
	bmi(Person, Bmi), Bmi =<25,
	disease(Person, diabetes).
risk (Person, low) :-	age(Person,A), A =< 29.

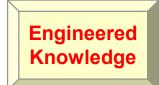
Examples of engineered rules:

eligible(Person, no) :- age(Person,A), A =< 21. eligible(Person,no) :- country(Person,C), C =/= switzerland.

Combining engineered and learned rules:

accept(Person, yes) :- eligible(Person, yes), risk(Person, low).
accept(Person, yes) :- eligible(Person, yes), risk(Person, medium).
accept(Person, no) :- eligible(Person, no).
accept(Person, no) :- risk(Person, high)

Learned Knowledge



Learning and Knowledge

Summary: Creating Knowledge Bases

- **Knowledge Engineering:** Human experts build knowledge base
 - For knowledge we are aware of
 - For knowledge that must be correct (e.g. compliance rules)
 - Inferences are explainable (trust)

Machine Learning: automatic creation of knowledge from example data

- Can solve complex tasks for which
 - knowledge is not known
 - knowledge is tacit
- Reliance on real-world data instead of pure intuition
- Requires large sets of data
- Can adapt to new situations (collect more data)

