

Machine Learning: Learning Rules

Knut Hinkelmann

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Supervised Learning: Learning Decision Trees

Decision Trees

Example: Decision tree for playing tennis

- Decision trees are primarily used for classification
- Decision trees represent classification rules
- Decision tree representation:
 - Each internal node tests an attribute
 - Each branch corresponds to attribute value
 - Each leaf node assigns a classification
- Decision trees classify instances by sorting them down the tree from the root to some leaf node,

Decision Trees represent Rules

- Each path from root to a leaf is a rule
- Each path/rule is a conjunction of attribute tests:
 - IF Outlook = Sunny AND Humidity = High
 THEN No
 - IF Outlook = Sunny AND Humidity = Normal
 THEN Yes
 - IF Outlook = Overcast
 THEN Yes
 - IF Outlook = Rain AND Wind = Strong
 THEN No
 - IF Outlook = Rain AND Wind = Weak
 THEN Yes

Decision Trees represent Rules

- If the classes are boolean, a path can be regarded as a conjunction of attribute tests.
- The tree itself is a disjunction of these conjunctions

(Outlook = Sunny
$$\land$$
 Humidity = Normal)
 \lor
(Outlook = Overcast)
 \lor
(Outlook = Rain \land Wind = Weak)

Decision Tree – Decision Table

The decision tree can be represented as a decision table.

	outlook	mannancy	••ma	Termis
	Sunny,Overcast, Rain	High, Normal	Strong,Weak	Yes, No
1	Sunny	High		No
2	Sunny	Normal		Yes
3	Overcast			Yes
4	Rain		Strong	No
5	Rain		Weak	Yes

Playing Tennis

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Learning Rules / Decision Trees

Training and Application Phase

Application: Classification

- Goal: assign a class to previously unseen records of input data as accurately as possible
- Training: Learning the classification criteria
 - Given: sample set of training data records
 - Result: Decision logic to determine class from values of input attributes (decision tree, rules, model)

n

Supervised Learning

Example: Learning Decision Logic

Each record consists of several input attributes and one output attribute, which is the decision

Generalisation if training set does not cover all possible cases or if data are too specific (= induction)

Predictive Model for Classification

- Given a collection of training records (*training set*)
 - Each record consists of *attributes*, one of the attributes is the *class*
 - The class is the dependent attribute, the other attributes are the independent attributes
- Find a model for the class attribute as a function of the values of the other attributes.
- Goal: to assign a class to previously unseen records as accurately as possible.

- Generalisation of data if training set does not cover all possible cases or data are too specific
 - → Induction

Example

The dependent variable "Tennis" determines if the weather is good for tennis ("Yes") or not ("No").

Training Data

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Induction generalizes the data set \rightarrow prediction of future case

The result of the induction algorithms classifies the data with only three of the four attributes into the classes "Yes" and "No".

Discussion

What is the difference between the table with the Training Data and the Decision Table?

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Playing Tenni	s			
Outlook		Humidity	Wind	Tennis
	Sunny,Overcast, Rain	High, Normal	Strong,Weak	Yes, No
1	Sunny	High		No
2	Sunny	Normal		Yes
3	Overcast			Yes
4	Rain		Strong	No
5	Rain		Weak	Yes

A sociologist, an economist, a physicist and a mathematician go by train to Scotland. They look out of the window and see a black sheep.

Sociologist: "In Scotland the sheeps are black"

Economist: "Wrong, in Scotland there are black sheep"

Physicist: "Wrong, in Scotland there is at least one black sheep."

Mathematician: "Still wrong. In Scotland there is a least on sheep that is black on a least one side"

Training Data vs. Decision Tables (Rules)

Training Data are ...

- ... incomplete: only a subset of all possible situations
- ... too specific: they contain input variables, which are not necessary to determin the output
- Decision Tree shall be general, i.e. allow decisions/ predictions for unknown situations
 - Rules only consider combinations of input values, which are necessary to determine the output
 - As a consequence, the decision table does not contain variables, which are not necessary at all (e.g. playing tennis does not depend on the temperature)

Induction of Decision Tree

- Enumerative approach
 - Create all possible decision trees
 - Choose the tree with the least number of questions

This approach finds the best classifying tree, but it is inefficient.

- Heuristic approach:
 - Start with the full set of elements
 - Extend the tree step by step with new decision criteria
 - Stop, if the desired homogenity is achieved

This approach is efficient, but does not necessariy find the best classifying tree.

Learning a Decision Tree

Creation of Decision Trees

Each decision divides the area in sections

IF

THEN accept

income > 6000

Prof. Dr. Knut Hinkelmann

Types of Data

- Discrete: final number of possible values
 - Examples: marital status, gender
 - Splitting: selection of values or groups of values
- Numeric infinite number of values on which an order is defined
 - Examples: age, income
 - Splitting: determine interval boundaries

For which kind of attributes is splitting easier?

Determine how to split the Records in a Decision Tree

- Attribute selection
 - Which attributes separate best in which order?
 - e.g. income before marital status

Test condition

- Which **values** separate best?
 - Discrete: select value, e.g. single or married
 - Number: determine splitting number, e.g. income < 5000

Heuristic Induction: Principle

Learning a Decision Tree

- Calculate for each attribute, how good it classifies the elements of the training set
- Classify with the *best* attribute
- Repeat for each subtree the first two steps
- Stop this recursive process as soon as a termination condition is satisfied

Generating Decision Trees

- ID3 is a basic decision learning algorithm.
- It recursively selects test attributes and begins with the question "which attribute should be tested at the root of the tree? "
- ID3 selects the attribute with the highest
 - Information Gain

(this is the attribute with reduces entropy the most)

- To calculate the information gain of an attribute A one needs
 - the **Entropy** of a classification
 - the Expectation Entropy of the attribute A

Entropy ("disorder")

- Entropy is a measure of *(im)purity* of a collection S of examples.
- The higher the homogeneity of the information content, the lower the entropy
- Let there be two classes + (positive) and (negative).
- Let p be the frequency of positive elements in S and n the frequency of negative elements in S
- The more equal p and n, the higher is the entropy the more unequal p and n, the smaller is the entropy

high entropy

Calculation of Entropy in Information Theory

- The defining expression for entropy in the theory of information was established by Claude E. Shannon in 1948
- It is of the form:

$$H=-\sum_i p_i \log_b p_i,$$

where

p_i is the probability of the message m_i
b is the base of the logarithm used (common values of b are 2, e and 10)

 $\log_2(0)$ cannot be calculated; in the case of $p_i = 0$ for some *i*, the value of the corresponding summand $0 \log_b(0)$ is taken to be 0, which is consistent with the limit: $\lim_{p \to 0+} p \log(p) = 0$

Calculation of the Entropy for Binary Classification

- Assume a data set S with elements belonging to two classes C₁ and C₂
- The entropy is calculated by

Entropy (S) =
$$-p_1 * \log_2(p_1) - p_2 * \log_2(p_2)$$

 \mathbf{p}_i relative frequencies of elements belonging to classes C₁ and C₂

$$p_1 = \frac{|C_1|}{|S|}$$
 $p_2 = \frac{|C_2|}{|S|}$

where

 $\begin{aligned} |C_1| & \text{frequency of elements belonging to class } C_1 \\ |C_2| & \text{frequency of elements belonging to class } C_2 \\ |S| = |C_1| + |C_2| & \text{is the number of all elements} \end{aligned}$

Entropy Calculation for different Distributions

• The more different $|C_1|$ and $|C_2|$, the lower is the entropy

C1	C2	p1	ld(p1)	p2	ld(p2)	Entropy(S)
7	7	0.5	-1	0.5	-1	1
6	8	0.43	-1.22	0.57	-0.81	0.99
5	9	0.36	-1.49	0.64	-0.64	0.94
4	10	0.29	-1.81	0.71	-0.49	0.86
3	11	0.21	-2.22	0.79	-0.35	0.75
2	12	0.14	-2.81	0.86	-0.22	0.59
1	13	0.07	-3.81	0.93	-0.11	0.37

Id = \log_2 (logarithmus dualis) $\log_2(0)$ cannot be calculated, but if a class is empty, i.e. $|C_1| = p_1 = 0$ or $|C_2| = p_2 = 0$ no classification is necessary. In this case $p_i * \log_2(p_i)$ is taken to be 0

Information Gain

- The information gain for an attribute A is the expected reduction in entropy caused be partitioning the example according to the attribute A
- The information gain is calculated by subtracting the expectation entropy of the subtrees created by A from the current entropy

$$GAIN(S, A) = Entropy(S) - EE(A)$$

Expected Entropy

Let A be an attribute with m possible values v₁, ..., v_i, ..., v_m

- *Values(A)* is the set of all possible values for attribute A
- S_v is the subset of S for which attribute A has value v
- The attribute A divides the elements into m partitions (subtrees)
- Entropy(S_v) is the entropy of the subtree for which the attribute A has value v
- The Expected Entropy EE_A for an attribute A is the weighted average of the entropies of the subtrees created by the values v_i of A

$$EE(A) := \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Formula for the Information Gain

The information gain for an attribute A is the expected reduction in entropy caused be partitioning the example according to the attribute A

$$GAIN(S, A) = Entropy(S) - \left(\sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)\right)$$

Exercise Entropy (S) = 1Before Splitting: 10 records of class 0, 10 records of class 1 Own Car Student Car? Type? ID? C₂₀ Family uxury C₁ Yes No C₁₀ Sport C0: 6 C0: 4 C0: 8 C0: 1 C0: 1 C0: 1 C0: 0 C0: 0 C0: 1 C1:0 C1:4 C1: 6 C1: 3 C1:0 C1:7 C1:0 C1:1 C1:1

- Which test condition is the best?
- Does it make sense?

Thanks to Nadeem Qaisar Mehmood

ID3: Information Gain for Attribute Selection

- The goal of learning is to create a tree with minimal entropy
- ID3 uses the Information Gain to select the test attribute

On each level of the tree select the attribute with the highest information gain

The recursive calculation of the attributes stops when either

- all partitions contain only positive or only negative elements (i.e. entropy is 0) or
- a user-defined threshold is achieved

An Illustrative Example (1)

The dependent variable "Tennis" determines if the weather is good for tennis ("Yes") or not ("No").

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

n

An Illustrative Example (2): Entropy of the Decision Tree

Entropy(S) = $-9/14*\log_2(9/14) - 5/14*\log_2(5/14)$ = 0,94

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

positive frequency (Yes) negative frequency (No)

An Illustrative Example (3): Selection of the topmost Node

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

In order to determine the attribute that should be tested first in the tree, the information gain for each attribute (*Outlook*, *Temperature*, *Humidity* and *Wind*) is determined.

- Gain(S,Outlook) = **0.246**
- Gain(S,Humidity) = **0.151**
- Gain(S,Wind) = **0.048**
- Gain(S,Temperature) = **0.029**
- Since *Outlook* attribute provides the best prediction, it is selected as the decision attribute for the root node.

An Illustrative Example (4): Computation of Information Gain

The computation of Information Gain for Outlook:

$$GAIN(S,Outlook) = Entropy(S) - EE(Outlook) \\= 0.94 - 0.694 = 0.246$$

• The computation of information gain for *Humidity* and *Wind*:

n

An Illustrative Example (5): Resulting Subtree

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

The partially learned decision tree resulting from the first step of ID3:

An Illustrative Example (6): Entropie of a Subtree

The subtree with root Sunny: Entropy(Sunny) = $-2/5 \log_2(2/5) - 3/5 \log_2(3/5)$ = 0,970

Element	Outlook	Temperature	Humidity	Wind	Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cold	Normal	Weak	Yes
6	Rain	Cold	Normal	Strong	No
7	Overcast	Cold	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

The more **up** in the decision tree, the higher the entropy of the subtree

An Illustrative Example (7): Selectiong Next Attribute

 $S_{sunnv} = \{D1, D2, D8, D9, D11\}$

Gain $(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$ Gain $(S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$ Gain $(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

An Illustrative Example (8): The Resulting Decision Tree

The dependent variable "Tennis" determines if the weather is good for tennis ("Yes") or not ("No").

Element	Outlook	Temperatur	re Humidity	Wind	Tennis	
1	Sunny	Hot	High	Weak	No	Outlook
2	Sunny	Hot	High	Strong	No	
3	Overcast	Hot	High	Weak	Yes	
4	Rain	Mild	High	Weak	Yes	Sunny Overcast Rain
5	Rain	Cold	Normal	Weak	Yes	
6	Rain	Cold	Normal	Strong	No	Humidity
7	Overcast	Cold	Normal	Strong	Yes	Yes Wind
8	Sunny	Mild	High	Weak	No	
9	Sunny	Cold	Normal	Weak	Yes	
10	Rain	Mild	Normal	Weak	Yes	High Normal Strong W
11	Sunny	Mild	Normal	Strong	Yes	
12	Overcast	Mild	High	Strong	Yes	λ
13	Overcast	Hot	Normal	Weak	Yes	ivo ies ivo
14	Rain	Mild	High	Strong	No	

The result of the induction algorithms classifies the data with only three of the four attributes into the classes "Yes" and "No".

How to specify Attribute Test Conditions

Specification of the test condition depends on

- attribute types
 - Nominal
 - Ordinal
 - Continuous
- number of ways to split
 - 2-way split
 - Multi-way split

Learning Decision Trees: Generalisation of Data

Tid	Employed	Marital Status	Taxable Income	accept
1	No	Single	125K	No
2	Yes	Married	160K	Yes
3	Yes	Single	70K	No
4	No	Married	120K	No
5	Yes	Divorced	95K	Yes
6	Yes	Married	60K	Νο
7	No	Divorced	220K	No
8	Yes	Single	85K	Yes
9	Yes	Married	95K	No
10	Yes	Single	90K	Yes

The model uses intervals instead of concrete numerical data

Learning Decision Trees: Generalisation of Data

		ical on	cal wow	S
	catego	catego	continu	class
Tid	Employed	Marital Status	Taxable Income	accept
1	No	Single	125K	No
2	Yes	Married	160K	Yes
3	Yes	Single	70K	No
4	No	Married	120K	No
5	Yes	Divorced	95K	Yes
6	Yes	Married	60K	No
7	No	Divorced	220K	No
8	Yes	Single	85K	Yes
9	Yes	Married	95K	No
10	Yes	Single	90K	Yes

Training Data

The model uses intervals instead of concrete numerical data

Splitting for Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting for Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting for Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

• Binary Decision: (A < v) or $(A \ge v)$

Multi-way Split: Intervals

considering all possible splits and finding the best cut can be computing intensive

ID3 Algorithm in English

The algorithm looks at each attribute within the attributelist and determines the attribute **X** which provides the largest information gain. Once **X** is found it can be removed from the list of candidates to be considered.

A **newattributelist** and a **newdata_subset** are created which are subsets of the original **attributelist** and **newdata_subset** respectively (excluding attribute **X**). Each possible value of the attribute **X** is recursively called with the **newattributelist** and the narrowed down examples of **newdata_subset**, so the algorithm will continue performing the steps indicated. The base case is reached when a **attributelist** is provided that has no attributes in it (so the attributes have been exhausted), or where the entropy is equal to 0 (there's complete certainty). For these cases, the algorithm returns a leaf node consisting of the most probable outcome.

https://computersciencesource.wordpress.com/2010/01/28/year-2-machine-learning-decision-trees-and-entropy/

attribute = feature = independent variable

Building the Decision Tree

Decision trees can be constructed using the ID3 algorithm that splits the data by the attribute with the maximum information gain recursively for each branch.

```
maketree (attributelist, examples) returns tree
BASE CASE: if attributelist is empty, or entropy = 0
return an empty tree with leaf = majority answer in examples
RECURSTON:
find the attribute X with the largest information gain,
list subset = remove X from the attributelist
create an empty tree T
for each possible value 'x' of attribute X
data subset = get all examples where \mathbf{X} = \mathbf{x'}
t = maketree( list subset, data subset )
add t as a new sub-branch to T
endfor
return T
```

https://computersciencesource.wordpress.com/2010/01/28/year-2-machine-learning-decision-trees-and-entropy/

A basic Decision Tree Learning Algorithm

ID3(Examples, Target-attribute, Attributes)

/* Examples: The training examples; */
/* Target-attribute:The attribute whose value is to be predicted by the tree; */
/* Attributes: A list of other attributes that may be tested by the learned decision tree. */
/* Return a decision tree that correctly classifies the given Examples */
Step 1: Create a Root node for the tree
Step 2: If all Examples are positive, Return the single-node tree Root, with label = +
Step 3: If all Examples are negative, Return the single-node tree Root, with label = Step 4: If Attributes is empty, Return the single-node tree Root, with label = most common value of
Target-attribute in Examples
Step 5: Otherwise Begin

- A \leftarrow the attribute from Attributes that best (i.e., highest information gain) classifies Examples;
- The decision attribute for $Root \leftarrow A$;
- For each possible value, v_i , of A,
 - Add a new tree branch below *Root*, corresponding to the test $A=v_i$;
 - Let $Examples(v_i)$ be the subset of Examples that have value v_i for A;
 - If $Examples(v_i)$ is empty
 - * Then below this new branch add a leaf node with label = most common value of Target-attribute in Examples
 - * Else below this new branch add the subtree $ID3(Examples(v_i), Target-attribute, Attributes- A))$

End

Return Root

Preference for Short Trees

- Preference for short trees over larger trees, and for those with high information gain attributes near the root
- Occam's Razor: Prefer the simplest hypothesis that fits the data.
- Arguments in favor:
 - a short hypothesis that fits data is unlikely to be a coincidence
 compared to long hypothesis
- Arguments opposed:
 - There are many ways to define small sets of hypotheses

Overfitting

- When there is noise in the data, or when the number of training examples is too small to produce a representative sample of the true target function, the rule set (hypothesis) overfits the training examples!!
- Consider error of hypothesis h over
 - training data: *errortrain*(h)
 - entire distribution D of data: errorD(h)
- Hypothesis h OVERFITS training data if there is an alternative hypothesis h0 such that
 - errortrain(h) < errortrain(h0)
 - errorD(h) > errorD(h0)

Avoiding Overfitting by Pruning

- The classification quality of a tree can be improved by cutting weak branches
- Reduced error pruning
 - remove the subtree rooted at that node,
 - make it a leaf,
 - assign it the most common classification of the training examples afiliated with that node.
- To test accuracy, the data are separated in training set and valication set. Do until further pruning is harmful:
 - Evaluate impact on *validation* set of pruning each possible node
 - Greedily remove the one that most improves *validation* set accuracy

Pruning

These figures shoe the structure of a decision tree before and after pruning

Training and Validation

Data set can be divided into

1. training set (used to build the

Prof. Dr. Knut Hinkelmann

Learning Decision Trees

Generalisations

- Multiple Classes
 - Although the examples had only two classes, decision tree learning can be done also for more than two classes
 - Example: Quality
 - okay, rework, defective
- Probability
 - The examples only had Boolean decisions
 - Example: IF income > 5000 and age > 30 THEN creditworthy
 - Generalisation: Probabilties for classification
 - Example: IF income > 5000 and age > 30 THEN creditworthy with probability 0.92

Algorithms for Decision Tree Learning

- Examples of algorithms for learning decision trees
 - C4.5 (successor of ID3; implemented as J48 in WEKA)
 - CART (Classification and Regression Trees)
 - CHAID (CHI-squared Automatic Interaction Detection)
- A comparison¹⁾ of various algorithms showed that
 - the algorithms are similar with respect to classification performance
 - pruning increases the performance
 - performance depends on the data and the problem.

¹⁾ D. Michie, D.J. Spiegelhalter, C.C. Taylor: Machine Learning, Neural and Statistical Classificaiton, Ellis Horwood 1994