

Ontology-based Metamodeling

Knut Hinkelmann

Making the Knowledge in Models explicit

ut.hinkelmann@fhnw.ch

- Humans «know» the meaning of the modeling objects.
 - Example: Process Modeling

«Cook pasta» is a task about preparing food

 The objective is to represent the knowledge so that it can be interpreted by a system for decision making and problem solving

2

Dimensions of the Knowledge Space

Form: modeling language

Content: model information, represented in the description of elements

Use:

- process optimization requires knowledge about time and costs
- selection of a cloud service require knowledge about data and functionality

- Form: Syntax and semantic of modeling language.
- Content: Domain in which knowledge engineering is applied.
- Use: Stakeholders and their concerns determine the relevant subset of the knowledge and reasoning
- Interpretation: Graphical models typically are cognitively more adequate for human interpretation and ontologies can be interpreted by machines.

UNICAM Università di Camerino 1336 member of

Semantic Lifting

Semantic Lifting: Map knowledge of models into an ontology Knowledge Knowledge base graphical models (machine interpretable) (human intepretable) Models Reality

- Map knowledge of models into an ontology
 - Semantics: Classes of the metamodel are aligned with classes in the ontology
 - Interpretation: For each element in a model an instance of the ontology is created
 - Content: Model elements are annotated with domain knowledge from ontology
 - Inference of the ontology can be applied to the knowledge base

Modelling Environment

Ontology

Example: Business Process as a Service

From: CoudSocket Project

Example: Business Process as a Service

From: CoudSocket Project

The ontology contains classes for all modelling elements

BPMN Modelling Language in ADOxx

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

Annotate modeling elements with classes from the domain ontology

Example: Functionality of a Service

Ontology for APQC **Process Classification Framework** 🔻 😑 owl:Thing Image: American Productivity and Quality Center 🕨 😑 Acquire, Construct, and Manage Assets Deliver Physical Products Deliver Services Develop and Manage Business Capabilities Develop and Manage Human Capital 🕨 😑 Develop and Manage Products and Services Develop Vision and Strategy Manage Customer Service Manage Enterprise Risk, Compliance, Remediation, and Resiliency Manage External Relationships Manage Financial Resources Manage fixed-asset project accounting Manage internal controls 🗝 🛑 Manage international funds/consolidation 🕨 😑 Manage taxes Manage treasury operations Perform general accounting and reporting Perform global trade services Perform planning and management accounting Perform revenue accounting 🔻 😑 Invoice cust Generate customer billing data tain customer/product er files Post receivable entries Resolve customer billing inquiries Transmit billing data to customers Manage and process adjustments/deductions Manage and process collections Process accounts receivable (AR) Process customer credit Process accounts payable and expense reimbursements Manage Information Technology (IT) Market and Sell Products and Services

Transformation and Mapping

The model elements are exported as instances ontology classes

Cloud Service Selection

Functionality

Functional APQC category that reflect the functional requirement: roe to search *	
APQC category that reflect the functional requirement:	
rpe to search *	
F	
Action that reflect the functional requirement:	
pe to search *	
Object that reflect the functional requirement:	
ype to search *	

Non-functional requirements

Payment	
Select your preferred payment plan:	
Prepaid Annual Plan	
Try Free First	
Customizable Plan	
Monthly Fee	
None	
Performance	
Monthly Availability in %:	

Problems with Semantic Lifting

- Separate Environments for
 - Modelling
 - Knowledge Base (Inferencing)
- Inconsistency: Both metamodel and ontology must be aligned but are maintained independently:
 - Metamodel and ontology must represent the same semantics
 - Each change in metamodel must be reproduced in the ontology and vice versa
- Effort: After each change the model must be translated again into the ontology instances

ersità di Camerino 1336

member of

Ontology-based Metamodelling

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

Ontology-based Metamodeling (1): Metamodel is represented as an Ontology

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch UNICAM Università di Camerino 1336

Modelling Language Ontologies

Thanks to Emanuele Laurenzi

Ontology-based Metamodeling (2): Ontologies for Metamodel and Content

APQC Proces<<<<s Framework

🐃 💛 owi: i ning
🔻 😑 American Productivity and Quality Center
🕨 😑 Acquire, Construct, and Manage Assets
🔻 😑 Deliver Physical Products
🕨 😑 Manage logistics and warehousing
🕨 😑 Plan for and align supply chain resources
Procure materials and services
🕨 😑 Produce/Manufacture/Deliver product
Deliver Services
Develop and Manage E 'Produce/Manufacture/Deliver product'
Develop and Manage H_http://ikm-group.ch/archimeo/apqc#4_3_Produce_Manufac
Develop and Manage Products and Services
🕨 😑 Develop Vision and Strategy
🕨 😑 Manage Customer Service
🕨 😑 Manage Enterprise Risk, Compliance, Remediation, and Resiliency
🕨 😑 Manage External Relationships
🔻 😑 Manage Financial Resources
Manage fixed-asset project accounting
Manage internal controls
Establish internal controls, policies, and procedures
Operate controls and monitor compliance with internal controls policies
Report on internal controls compliance
Manage international funds/consolidation
Manage taxes
Manage treasury operations
Perform general accounting and reporting
Perform global trade services
Perform planning and management accounting
Periorial revenue accounting Processo accounts payable and expense reimburgements
Process accounts payable and expense reimbursements Process payroll
Manage Information Technology /IT)
Market and Sell Droducts and Services
🖝 🥌 murket und Jell Floudeta und Jelviea

Ontology-based Metamodeling (3): Ontologies for Language, Metamodel and Content

23

Palette Ontology (excerpt9

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

Ontology-Based Metamodel

- Single environment for modelling and ontology
- Model elements are directly created as instances in the ontology

Class hierarchy: ManualTask

Ø

Flow Object
Flow Object

🔻 😑 Task

CallActivity
SubProcess

BusinessRuleTask
 ManualTask
 ReceiveTask
 ScriptTask
 SendTask
 ServiceTask

owl:Thing
 Artifact
 Association
 BusinessProcess
 BusinessProcessEvent
 ConnectingObject

2 II 🗆 🗆 🗵

Asserted -

Ontology-based Metamodeling: Metamodel is represented as an Ontology

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

Agile Modelling

Ensure a precise shared interpretation of new modeling constructs to both **humans and machines**

Problem: Separation between Metamodel Developer and Modeler

Challenge: Separation of metamodelling and modelling (typically in separate environments, e.g. ADOxx Development and ADOxx Modelling Toolkits)

Objective: Integrate metamodeling and modeling in a single environment

Problem: Separation between Metamodel Developer and Modeler

Challenge: Separation of the metamodelling and metamodelling (typically in separate environments, e.g. ADOxx Development and ADOxx Modelling Toolkits)

Objective: Integrate metamodeling and modeling in a single environment

Challenge: Separation of metamodelling and modelling

- Challenge 1: Metamodeling is a joint effort between metamodel experts and domain experts
- Challenge 2: Sequentialization of metamodeling and modeling is time consuming

Integration Modeling and Metamodeling in a Single Environment

- Tight collaboration between metamodel developer and modeler
- Modeler can also take the role of metamodel developer

AOAME:

Agile and Ontology-Aided Modeling Environment

- AOAME is a a prototypical implementation for Agile and Ontology-Aided Modeling
- It is based on the PhD Thesis of Emanuele Laurenzi
- Implementation of the current version by
 - Emanuele Laurenzi
 - Charuta Pande
 - Devid Montecchiari

Ontology-Based Modeling in AOAME

sità di Cameri 1336

Model elements are directly created as instances in the ontology Modelling and ontology in a single environment

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

Modeling Elements are represented in a Class Hierarchy

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

1336

Extending AOAME Modeling Languages – on the fly

sità di Came 1336

Extending AOAME Modeling Languages

sità di Cameri 1336

Integration of Meta-modeling and Modeling: On-the-fly Modeling Language Adaptation

Hands-on Agile and Ontology-Aided Modeling in AOAME

