

Machine Learning - Idea

Knut Hinkelmann

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Knowledge Engineering

Knowledge

n

Knowledge Engineering: Human-Created Knowledge Base

Knowledge-Based Systems (Expert Systems)

Knowledge-Based Systems (Rules & Facts)

Decision Tables and Rule-Based Systems

Eligibility			
А	Degree valid	University Registered	eligible
	yes,no	yes, no, unclear	yes,no
1	yes	yes	yes
2	no	-	no
3	-	no	no
4	-	unclear	no

- Rule 1:
 - IF Temperature = low THEN heating power is increased
- Rule 2:
 - IF Temperature = normal AND humidity = low
 THEN heating power is normal

Facts:father(peter,mary)
father(peter,john)
mother(mary,mark)
mother(jane,mary)Rules:father(X,Y) \rightarrow parent(X,Y)
mother(X,Y) \rightarrow parent(X,Y)
father(X,Y) AND parent(Y,Z) \rightarrow grandfather(X,Z)
mother(X,Y) AND parent(Y,Z) \rightarrow grandmother(X,Z)

parent(X,Y) AND parent(X,Z) \rightarrow sibling(Y,Z)

Knowledge-Based Systems (Classes and Instances)

Example of an Ontology

University of Applied Sciences and Arts Northwestern Switzerland School of Business

Machine Learning

Self-driving Cars

n

"... it is hard to imagine discovering the set of rules that can replicate the driver's behavior." (Levy & Murnane 2006)

Face Recognition

Recognizing Numbers

It is very hard to specify what makes a «2»

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec1.pd

Spam Filter

n

Copyright 2003 by Randy Glasbergen. www.glasbergen.com

"It's not the most sophisticated Spam blocker I've tried, but it's the only one that works!"

Translation

"The spirit was willing, but the flesh was weak"

"Out of sight, out of mind." . . .

"The vodka was good, but the meat was rotten"

"Blind and insane."

https://www.snopes.com/language/misxlate/machine.asp

15

Knowledge

internal knowledge		external knowledge	
tacit knowledge	self-aware knowledge	documented knowledge	automated knowledge knowledge bases
		$E = m c^{2}$	Knowledge buses

Machine Learning: Learning (Tacit) Knowledge from Data

Machine Learning: General Idea

Training

- Collect data for the problem
- Use the data to learn how to solve the type of problem
- Result: Knowledge base

Application

 Use the learned knowledge for new problems

Machine Learning vs. Knowledge-based Systems

Knowledge-based System Input Data Inference Output Component **Rules Machine Learning** Input Data Learning Rules Component (Output)

Source: Vibhav Gogate, UT Dallas

Machine Learning in Context

 Machine Learning (Data Mining) is a step to discover knowledge in data

Knowledge is then used in processes and applications.

(Fayyad et al., 1996)

Types of Learning

- The learning method depends on the kind of data that we have at our disposal
 - The data contains sets of inputs and corresponding outputs: (i,o)
 - No prior knowledge: The data contains only the inputs i: output has to be determined
 - The data contains sets of inputs without corresponding «correct» output, but we can get some measure of the quality of an output o for input i. Rewards for good output quality.

Supervised Learning: Application Examples

	Input <i>i</i>	Output o
Spam filtering	An email	{spam, non-spam}
Face recognition	An image	Identified faces
Machine translation	A sentence in language A	A sentence in language B
Speech recognition	A speech signal	A (text) sentence
Fraud detection	A financial transaction	{fraud, non-fraud}
Robot motion	Sensory data	Motor control

n

Supervised Learning

Example: Classification

Classification

- Assign objects (input) to known classes (output)
- Examples:
 - credit assessment Input: customers of a bank Classes: credit worthy not credit worthy
 - Spam filtering

 Input: email
 Classes: spam
 non-spam
 - optical character recognition (OCR) Input: scanned pixel image Classes: ASCII characters

Training and Application Phase

- Training: Learning the classification criteria
 - Given: sample set of training data records
 - Result: Decision logic to determine class from values of input attributes (decision tree, rules, model)

Application: Classification

 Goal: assign a class to previously unseen records of input data as accurately as possible

Supervised Learning: Classification Criteria

The classifier decides, which individual belongs to which class

Problem:

- Input has different features
- The criteria for the decision are not always obvious
- Supervised Learning:
 - Learn the classification criteria from known examples
 - Criteria = relevant features and their valures

Example for Supervised Learning

Problem: When to give credit

Tid	Employed	Marital Status	Taxable Income	accept
1	No	Single	125K	No
2	Yes	Married	160K	Yes
3	Yes	Single	70K	No
4	No	Married	120K	No
5	Yes	Divorced	95K	Yes
6	Yes	Married	60K	No
7	No	Divorced	220K	No
8	Yes	Single	85K	Yes
9	Yes	Married	95K	No
10	Yes	Single	90K	Yes

Credit V	Vorthiness			
	Employed	Marital Status	Taxable Income	Accept
	Yes, No	Single, Divorced, Married	Integer	Yes, No
1	No			No
2	Yes	Single	> 80K	Yes
3	Yes	Divorced	> 80K	Yes
4	Yes	Single	≤ 80K	No
5	Yes	Divorced	≤ 80K	No
6	Yes	Married	> 100K	Yes
7	Yes	Married	≤ 100K	No

Knowledge Base: Decision Tree, Decision Table

Unsupervised Learning

- Sometimes, we don't have access to any output value o, we simply have a collection of input examples i
- Input: data sets without corresponding output values.
- Objective: learn the underlying patterns of our data
 - Are there any *correlations* between features?
 - Can we *cluster* our data set in groups which behave similarly?

Unsupervised Learning

Example: Clustering (= identify new classes)

average time between transactions

Example: Recommender Systems

Customers who bought this item also bought

Deep Learning (Adaptive Computation and Machine Learning series) > Ian Goodfellow

DEEP LEARNING

Hands-On Machine Learning with Scikit-Learn and TensorFlow:... > Aurélien Géron

Pattern Recognition and Machine Learning (Information Science... > Christopher M. Bishop

Reinforcement Learning

Reinforcement Learning

- Sometimes we don't have direct access to «the» correct output o for an input i
- But we can get a measure of «how good/bad» an output is
 - Often called the *reward* (can be negative or positive)
- The goal of the agent is to learn the behaviour that maximises its expected cumulative reward over time
 - To learn how to flip pancakes, the reward could for instance be +3 if the pancake is flipped, -1 if the pancake stays in the pan, and -5 if it falls

