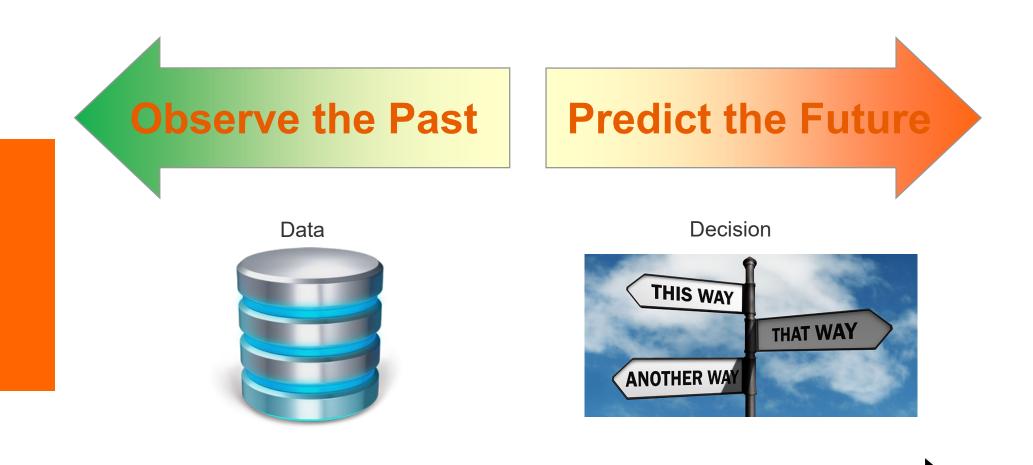


University of Applied Sciences and Arts Northwestern Switzerland School of Business

Combining Machine Learning and Knowledge Engineering


Challenges for Data Driven Solutions

- Consistency of Past and Future
- Cold Start/ New Products
- Changes in Customer Behavior
- Explanations

Compliance

n

A Temporal View

Time

Consistency between Data and Intent

Customers also bought

n

Talisker Skye Single Malt Scotch Whisky 70cl mit Etui und 2 Rocking Gläsern

CHF 58.00

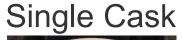
The Ultimate Mortlach 2008 Single Malt Scotch Whisky 70cl

CHF 68.00

Talisker Port Ruighe Single Malt Scotch Whisky 70cl mit Etui

CHF 65.00

Kopfgetriebeöl 10T30 Nuss-Karamell Likör 50cl


CHF 24.90

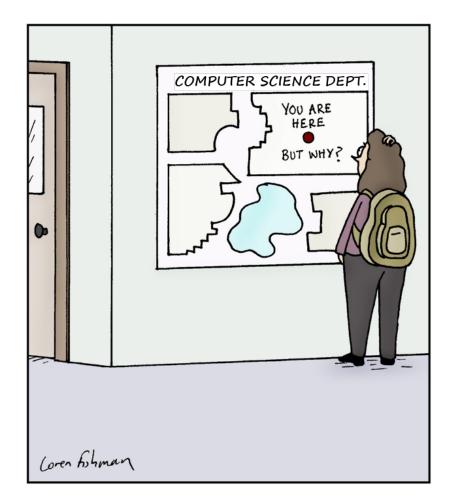
Cold Start: New or Limited Products

Limited Editions



New Distilleries/Brands

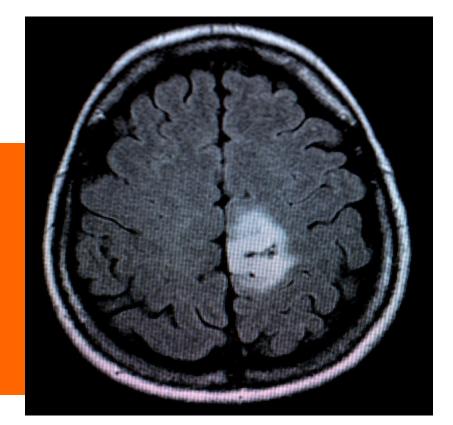
Small Batch


Changes in Customer Behaviour

Explanations

n

Can decisions without explanation be intelligent?



Trust Compliance Traceability

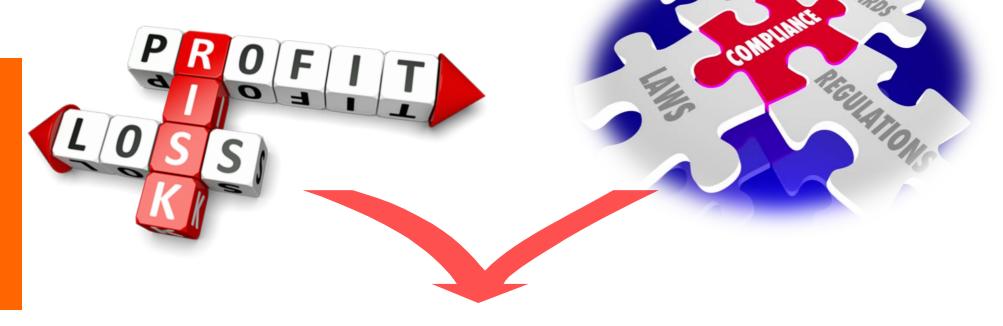
 $\mathbf{n}|_{\mathcal{W}}$

Diagnosis

n

Autonomous Driving

Machine Learning:
 Driving Behaviour

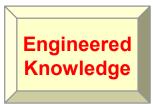

Knowledge Engineering: Traffic Rules

n

Compliance Rules

Example: Eligibility Decision for Insurance

Accept yes/no


Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (1/2)

Example: Application of health insurance

Machine Learning: data records about risks of clients

Engineered knowledge: eligibility and compliance

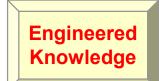
Applicants from Switzerland are eligible. A person younger than 21 year is not able to apply

...

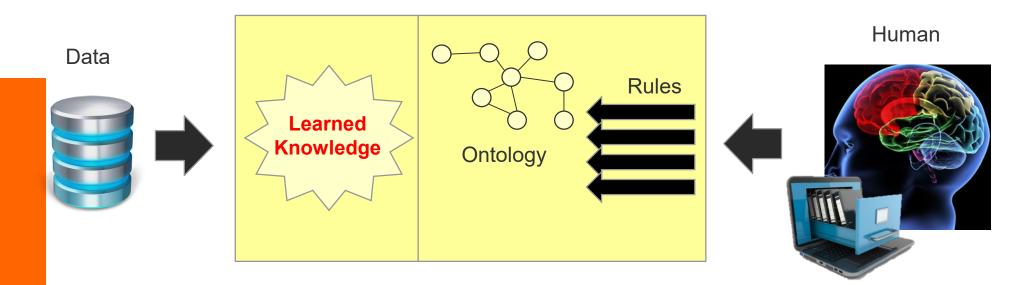
Combining Machine Learning and Knowledge Engineering for Eligibility Decisions (2/2)

Examples of learned rules:

risk (Person, high) :-	age(Person,A), A > 50,
	bmi(Person, Bmi), Bmi =<25,
	disease(Person, diabetes).
risk (Person, low) :-	age(Person,A), A =< 29.


Examples of engineered rules:

eligible(Person, no) :- age(Person,A), A =< 21. eligible(Person,no) :- country(Person,C), C =/= switzerland.

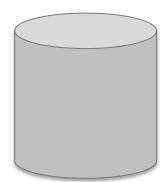

Combining engineered and learned rules:

accept(Person, yes) :- eligible(Person, yes), risk(Person, low).
accept(Person, yes) :- eligible(Person, yes), risk(Person, medium).
accept(Person, no) :- eligible(Person, no).
accept(Person, no) :- risk(Person, high)

Learned Knowledge

Combining Machine Learning and KnowledgeBaseMachine LearningKnowledge Base

- Tacit or unknown knowledge
- Stable knowledge


- Knowledge we are aware of
- Knowledge that must be correct
- Explanations

Summary: Creating Knowledge Bases

- **Knowledge Engineering:** Human experts build knowledge base
 - For knowledge we are aware of
 - For knowledge that must be correct (e.g. compliance rules)
 - Inferences are explainable (trust)

Machine Learning: automatic creation of knowledge from example data

- Can solve complex tasks for which
 - knowledge is not known
 - knowledge is tacit
- For stable world, where future can be predicted from past
- Reliance on real-world data instead of pure intuition
- Requires large sets of data

