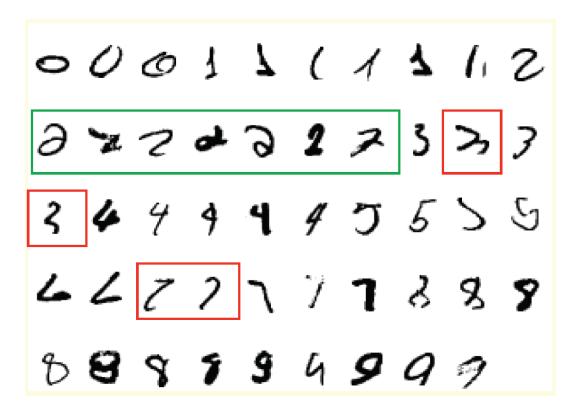


# Machine Learning: Neural Networks



#### **Motivation: Recognizing Numbers**

■ It is very hard to specify what makes a «2»



■ It is nearly impossible to create or learn symbolic rules.

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture\_slides\_lec1.pdf

#### **History of Artificial Neural Networks**

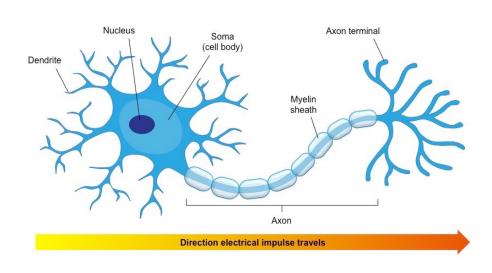
#### Creation:

- ♦ 1890: William James defined a neuronal process of learning
- Promising Technology:
  - ♦ 1943: McCulloch and Pitts earliest mathematical models
  - ♦ 1954: Donald Hebb and IBM research group earliest simulations
  - ♦ 1958: Frank Rosenblatt The Perceptron
- Disenchantment:
  - ♦ 1969: Minsky and Papert perceptrons have severe limitations
- Re-emergence:
  - ♦ 1985: Multi-layer nets that use back-propagation
  - ♦ 1986: PDP Research Group multi-disciplined approach

#### **ANN** application areas ...

- Science and medicine: modeling, prediction, diagnosis, pattern recognition
- Manufacturing: process modeling and analysis
- Marketing and Sales: analysis, classification, customer targeting
- Finance: portfolio trading, investment support
- Banking & Insurance: credit and policy approval
- Security: bomb, iceberg, fraud detection
- Engineering: dynamic load schedding, pattern recognition

## The Neuron - A Biological Information Processor



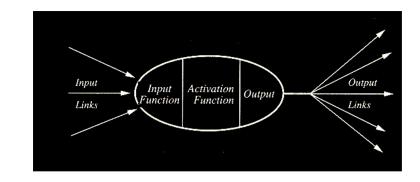
- dentrites the receivers
- soma neuron cell body (sums input signals)
- axon the transmitter
- synapse point of transmission
- neuron activates after a certain threshold is met
- Learning occurs via electrochemical changes in effectiveness of synaptic junction.

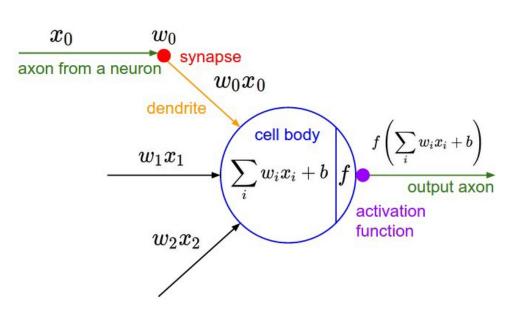
## **An Artificial Neuron - The Perceptron**

- input connections the receivers
- node, unit, or PE simulates neuron body
- output connection the transmitter
- activation function when is the neuron activated

• e.g. 
$$f(x) = \begin{cases} 1 & if \ x > \varphi \\ 0 & otherwise \end{cases}$$

- connection weights act as synaptic junctions
- Learning occurs via changes in value of the connection weights.



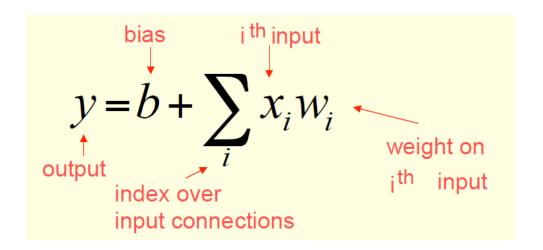


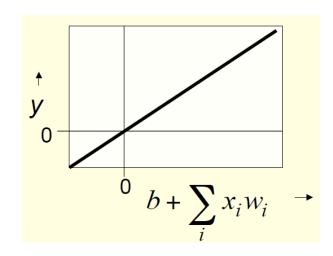
© David Fumo: https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc



#### Simple Type of Neuron: Linear Neuron

Simple but computationally limited

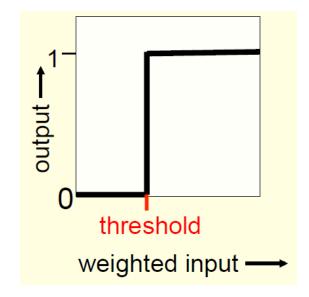






#### **Binary Threshold Neurons**

- McCulloch-Pitts (1943)
  - First compute a weighted sum of the inputs.
  - ◆ Then send out a fixed size spike of activity if the weighted sum exceeds a threshold.
- There are two equivalent ways to write the equations for a binary threshold neuron:



$$z = \sum_{i} x_{i} w_{i}$$

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge \theta \\ 0 \text{ otherwise} \end{cases}$$

$$z = b + \sum_{i} x_{i} w_{i}$$

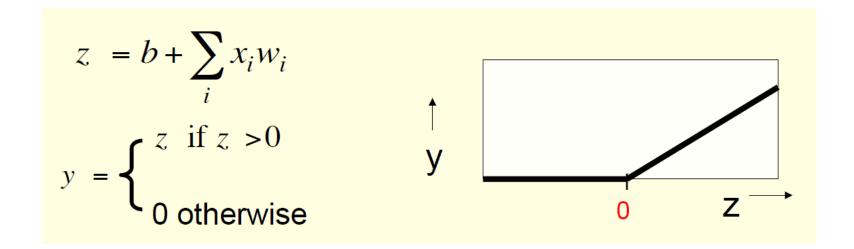
$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture\_slides\_lec1.pdf



#### **Rectified Linear Neurons**

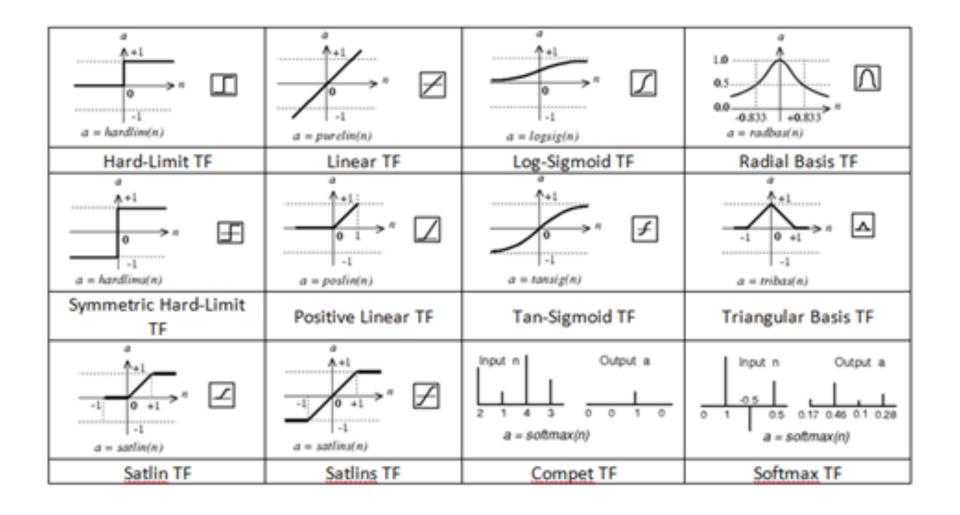
- They compute a *linear* weighted sum of their inputs.
- The output is a *non-linear* function of the total input.



Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture\_slides\_lec1.pdf

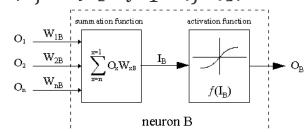


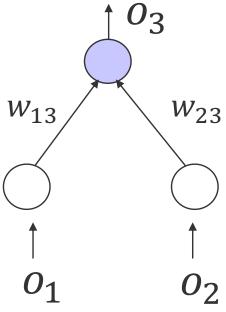
#### Other activation functions



#### **An Artificial Neuron - The Perceptron**

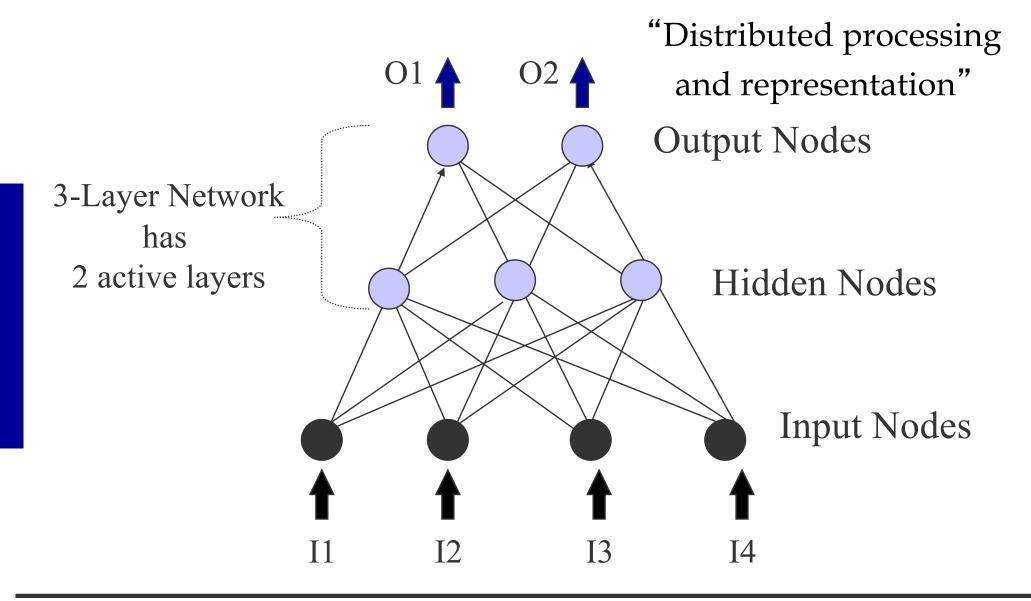
- Basic function of neuron is to sum inputs, and produce output
  - ◆ E.g. given sum is greater than threshold (McCulloch-Pitts Neuron)
- ANN node j produces an output as follows:
  - 1. Multiplies each component of the input pattern  $o_i$  by the weight  $w_{ij}$  of its connection  $(w_{ij}o_i)$
  - 2. Sums all weighted inputs  $(\sum_{i=1}^{n} w_{ij} o_i)$
  - 3. Transforms the total weighted input into the output using the activation function  $(o_i = f[\sum_{i=1}^n w_{ij}o_i])$







## **Feed-Forward Networks**





#### **Exercise**

- Design a Perceptron with McCulloch-Pitts Neuron with 2 inputs and 1 output neuron(s) which operates an
  - ◆ AND
  - ♦ OR
  - ♦ XOR

Holger Wache

#### **Learning: Backpropagation**

- Backward Propagation of Errors, often abbreviated as BackProp is one of the several ways in which an artificial neural network (ANN) can be trained.
- It is a supervised training scheme, which means, it learns from labeled training data.
- To put in simple terms, BackProp is like "learning from mistakes". The supervisor *corrects* the ANN whenever it makes mistakes.



#### The Back-propagation Algorithm

- On-Line algorithm:
  - Initialize weights
  - Present a pattern and target output
  - Compute output :  $o_i = f[\sum_{i=0}^n w_{ij} o_i]$  where  $f[x] = 1/(1 + e^{-x})$
  - Update weights:  $w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}$
- Repeat starting at 2 until acceptable level of error



## Calculating $\Delta w_{ij}$

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}$$

Delta Rule (Widrow-Hoff)

$$\Delta w_{ij} = \eta d_j \sum_{i=1}^n w_{ij} o_i$$

where  $0 < \eta \le 1$  is the learning rate (typically set = 0.1)  $d_j = t_j - o_j$  is the error signal,  $t_j$  is the target value, and  $o_i$  is the output value



## Calculating $\Delta w_{ij}$

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}$$

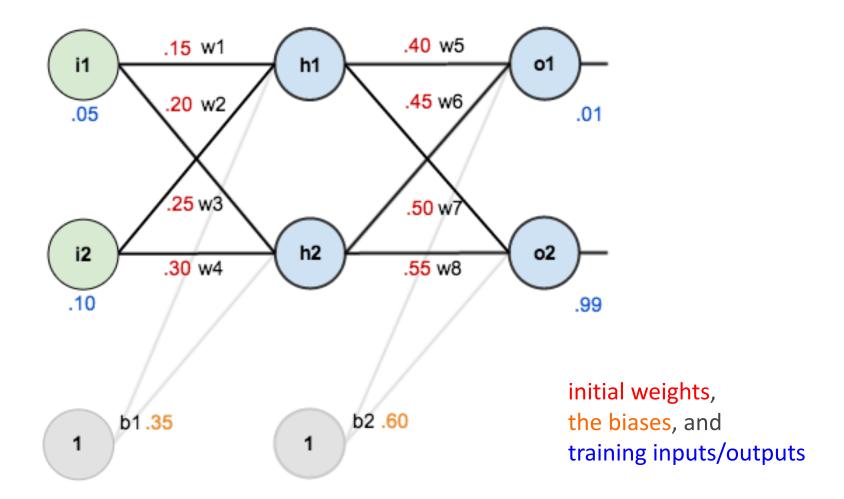
Backpropagation for sigmoid activation functions:

$$w_{ij} = \eta \, \frac{\delta E}{\delta w_{ij}}$$

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



#### **Example Backprop**

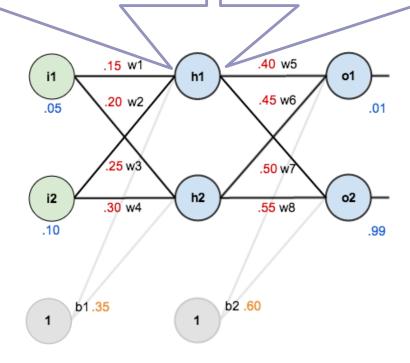


#### **Example Backprop: Forward Pass**

$$net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

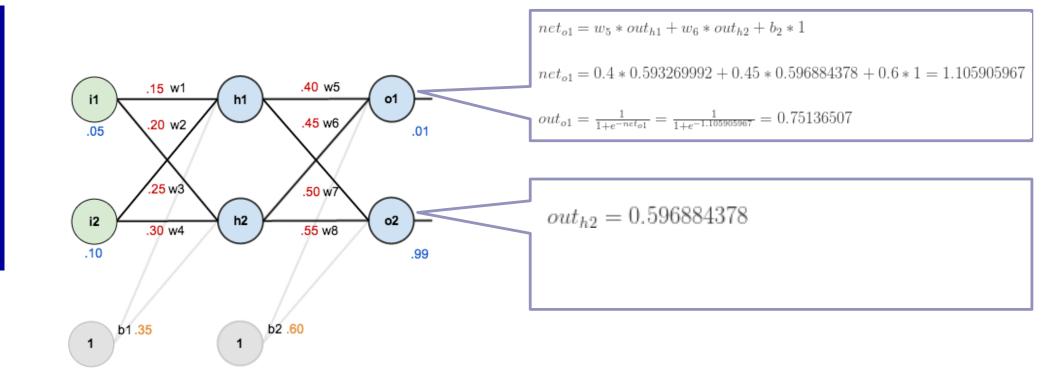
$$net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775$$

$$out_{h1} = \frac{1}{1 + e^{-net_{h1}}} = \frac{1}{1 + e^{-0.3775}} = 0.593269992$$



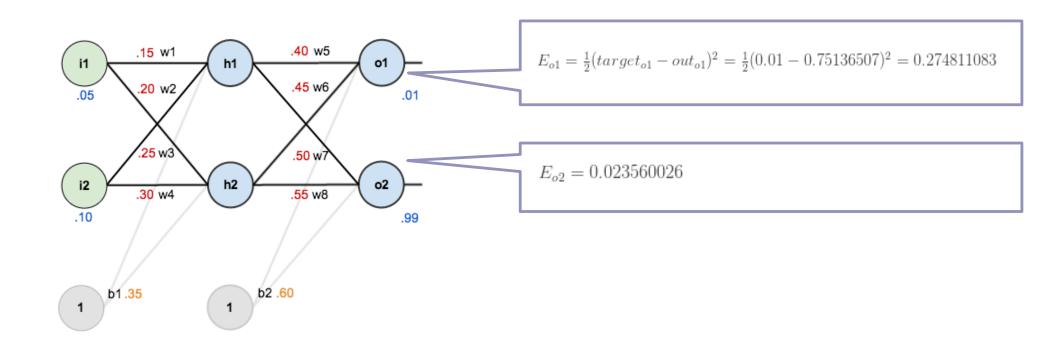


#### **Example Backprop: Forward Pass**

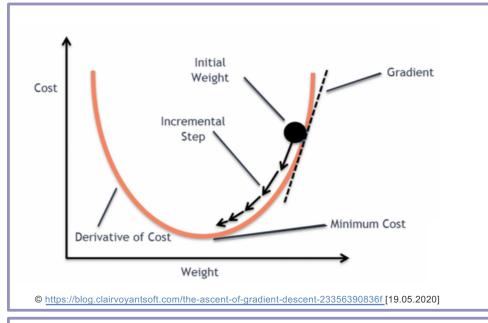


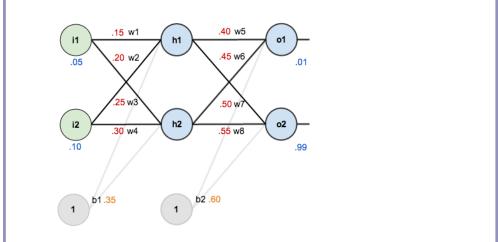
#### **Example Backprop: Error**

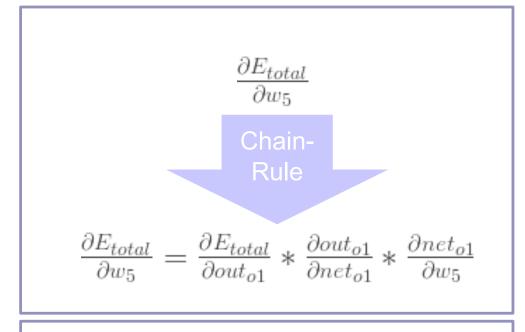
$$E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109$$

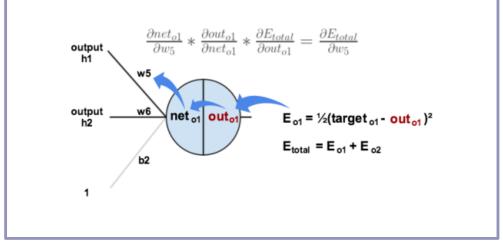






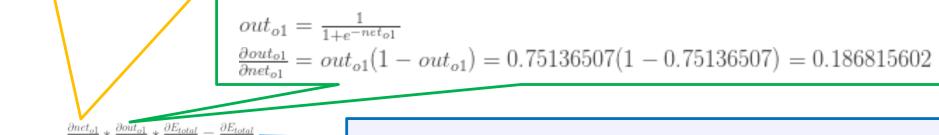


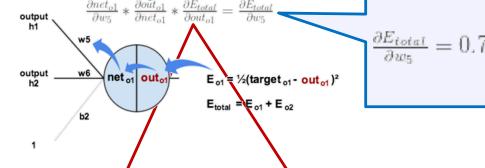






$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$
  
 $\frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$ 





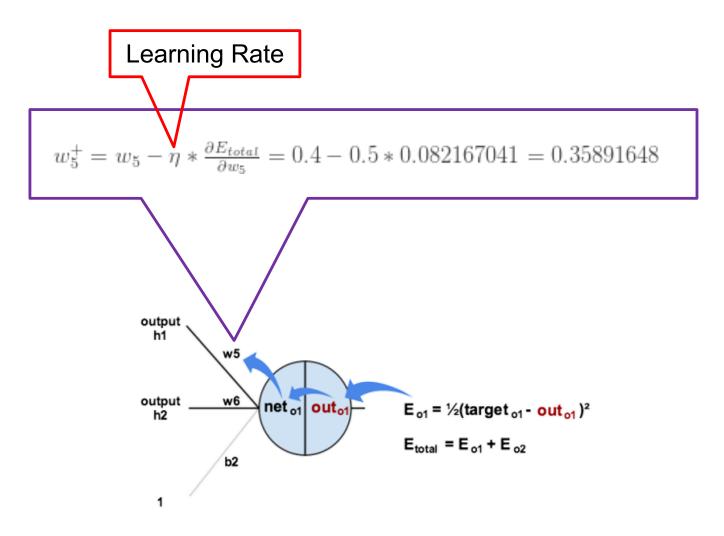
$$\frac{\partial E_{total}}{\partial w_5} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041$$

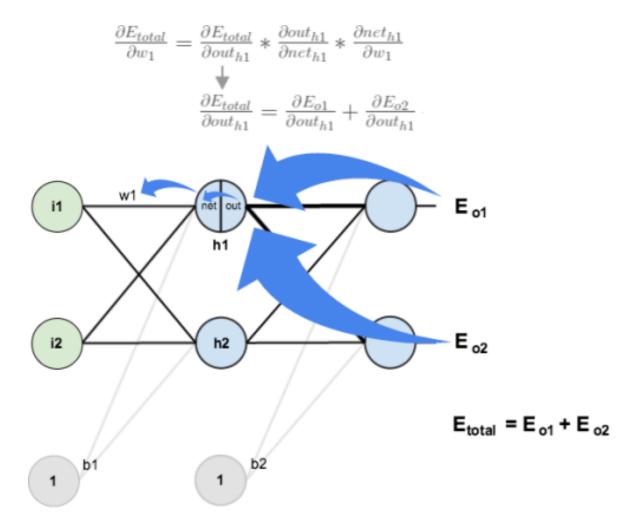
$$E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2} (target_{o1} - out_{o1})^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507$$

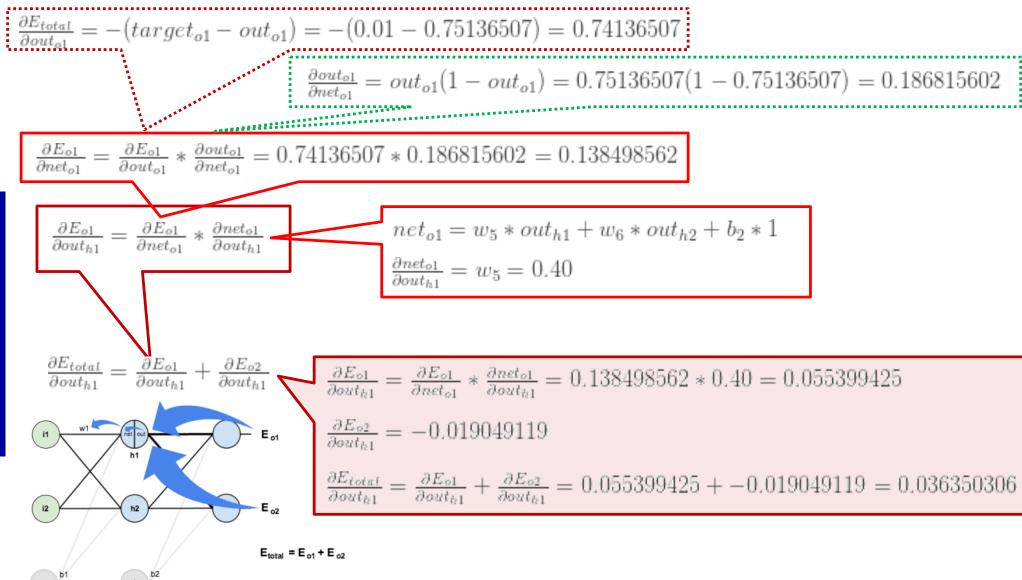








#### **Example Backprop: Backward Pass (Hidden Layer)**





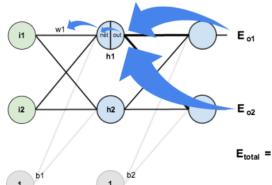
## Example Backprop: Backward Pass (Hidden Layer)

$$net_{h1} = w_1 * i_1 + w_3 * i_2 + b_1 * 1$$
  
 $\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05$ 

$$out_{h1} = \frac{1}{1+e^{-net_{h1}}}$$
  
 $\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999) = 0.241300709$ 

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h_1}} * \frac{\partial out_{h_1}}{\partial net_{h_1}} * \frac{\partial net_{h_1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568$$

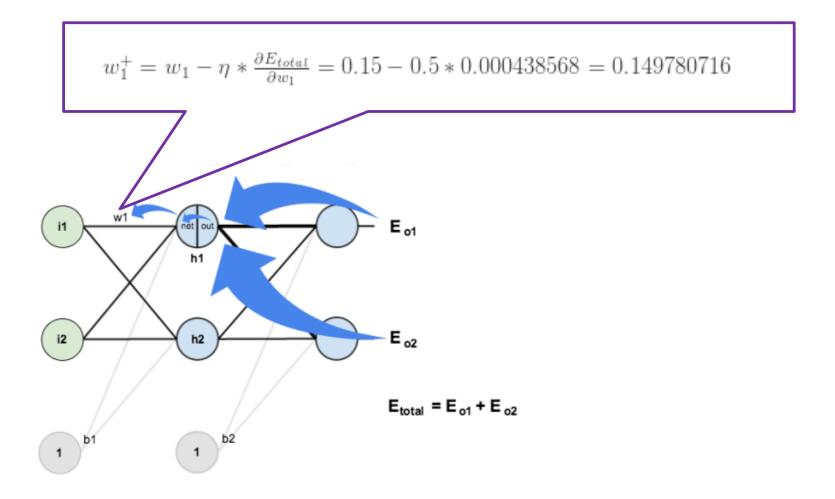


$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119 = 0.036350306$$

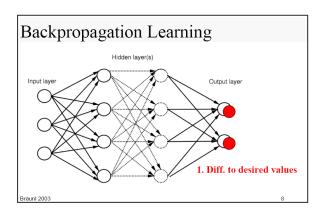
 $E_{total} = E_{o1} + E_{o2}$ 

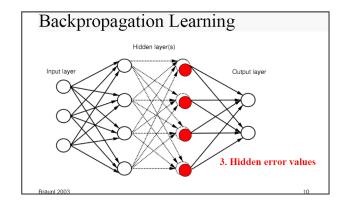


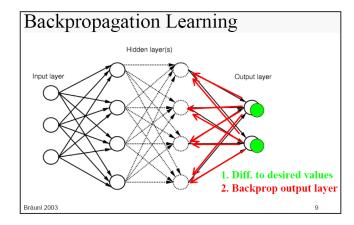
#### **Example Backprop: Backward Pass (Hidden Layer)**

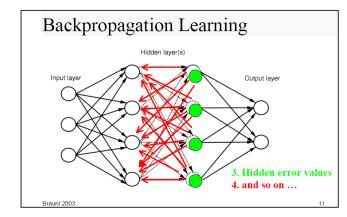


#### Visualization of the Backprop-Learning











#### **Generalization – A Probabilistic Guarantee**

- N = # hidden nodes m = # training cases
- $\epsilon$  = error tolerance (< 1/8) ■ W = # weights
- Network will generalize with 95% confidence if:
  - 1. Error on training set  $< \epsilon/2$

2.

$$m > O(\frac{W}{\epsilon} \log_2 \frac{N}{\epsilon}) \approx m > \frac{W}{\epsilon}$$

- Based on PAC theory  $\rightarrow$  provides a good rule of practice.
- If m is given then hidden nodes can be estimated!



#### Generalization: 20-bit parity problem

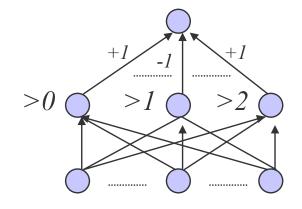
20-20-1 net has 441 weights

$$(n+1)^2$$
 weights

■ For 95% confidence that net will predict with  $\leq \epsilon = 0.1$ , we need this amount of training examples

 $m > \frac{W}{\epsilon} = \frac{441}{0.1} = 4410$ 

Parity bit value



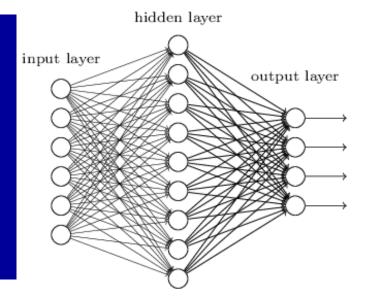
n bits of input  $2^n$  possible examples

# **NETWORK TYPES**

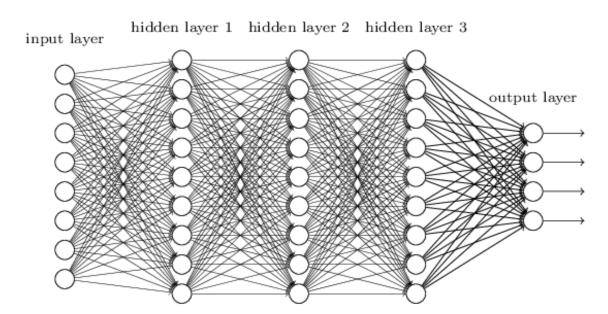
Holger Wache

#### **Deep Neural Networks**

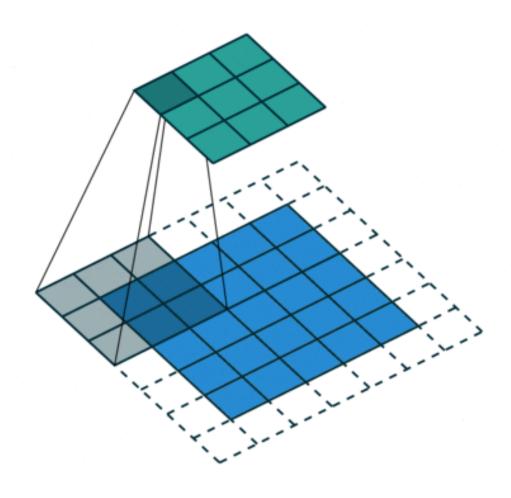
## "Non-deep" feedforward neural network



#### Deep neural network

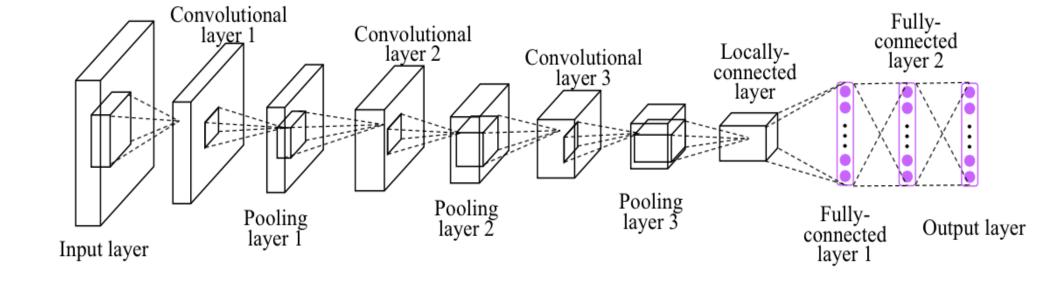


## **Convolutional Neural Networks (CNN)**



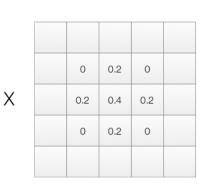


#### **Convolutional Neural Networks (CNN)**

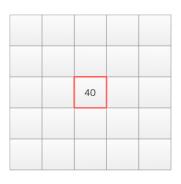


## **Convolutional Neural Networks (CNN)**

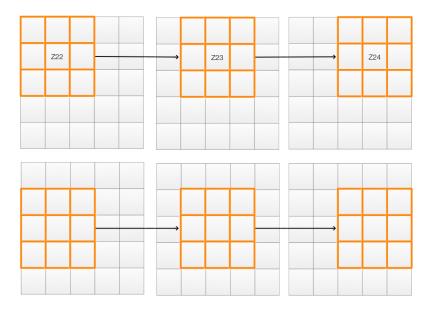
| 2  | 2  | 4  | 4  | 0  |
|----|----|----|----|----|
| 80 | 60 | 10 | 7  | 10 |
| 4  | 10 | 80 | 10 | 20 |
| 12 | 24 | 10 | 8  | 20 |
| 22 | 42 | 20 | 10 | 10 |



=

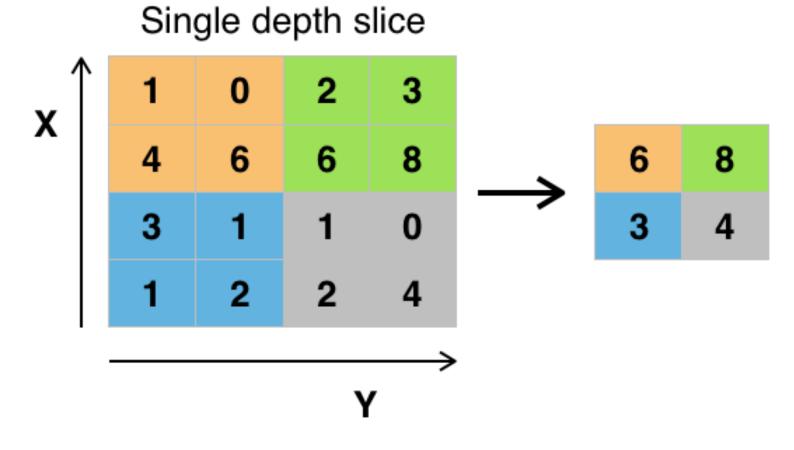


3x3 filter 80x0.4 + 4x0.2x10=40Image





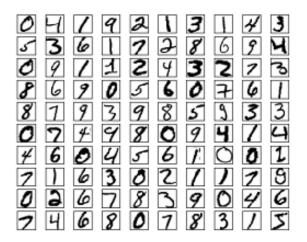
## **Convolutional Neural Networks (CNN)**



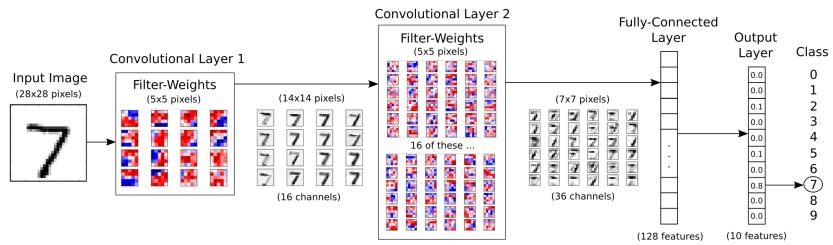
Example of Maxpool with a 2x2 filter and a stride of 2



## **CNN: Learning MNIST**



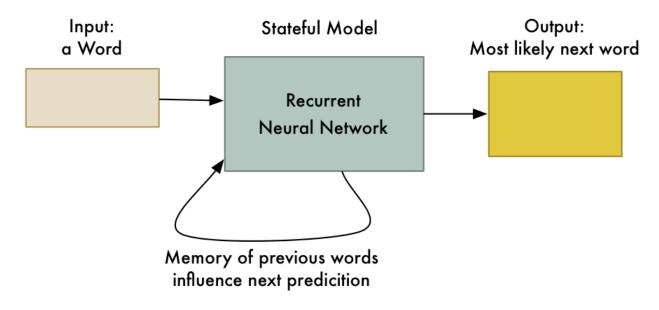
http://yann.lecun.com/exdb/mnist/



https://colab.research.google.com/github/Hvass-Labs/TensorFlow-

Tutorials/blob/master/02\_Convolutional\_Neural\_Network.ipynb#scrollTo=Q7kAPMNP9FZK [19.05.2020]

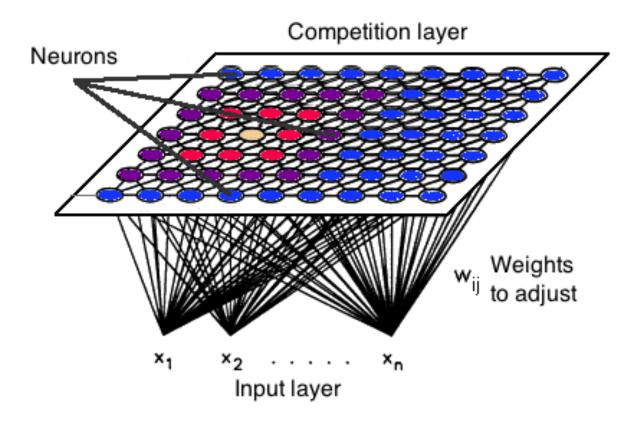
## **Recurrent Neuronal Network (RNN)**



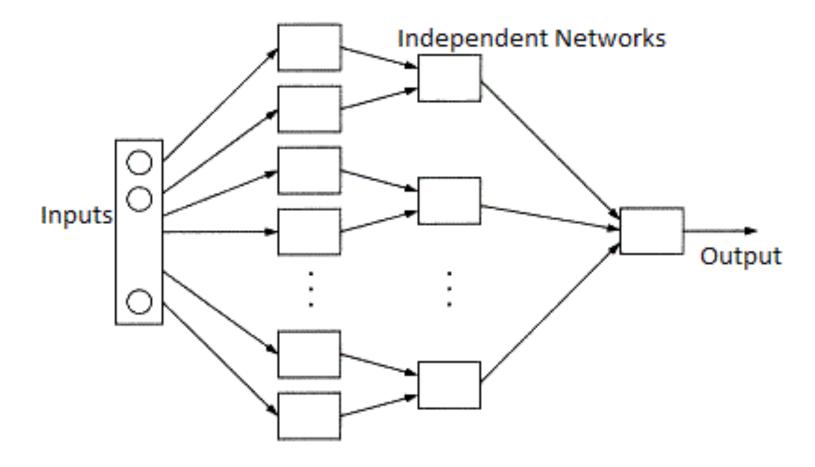
Output so far:

Machine

## **Kohonen Maps**



# **Modular Neural Networks (The Hit!)**



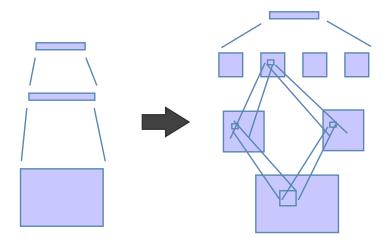
# **NETWORK DESIGN**

#### **Architecture of the network**

- How many nodes?
- Determines number of network weights
- How many layers?
- How many nodes per layer?
  - Input Layer
- Hidden Layer
- **Output Layer**

# **Architecture of the network: Connectivity**

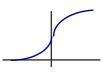
- Concept of model or hypothesis space
- Constraining the number of hypotheses:
  - selective connectivity
  - shared weights
  - recursive connections

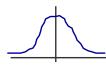


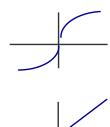


#### Structure of artificial neuron nodes

- Choice of input integration:
  - summed, squared and summed
  - multiplied
- Choice of activation (transfer) function:
  - sigmoid (logistic)
  - hyperbolic tangent
  - Guassian
  - linear
  - soft-max







# Selecting a Learning Rule (Optimizer)

- Generalized delta rule (steepest descent)
- Momentum descent
- Advanced weight space search techniques
- Global Error function can also vary
  - ♦ Normal
  - quadratic
  - ◆ cubic

# **NETWORK TRAINING**



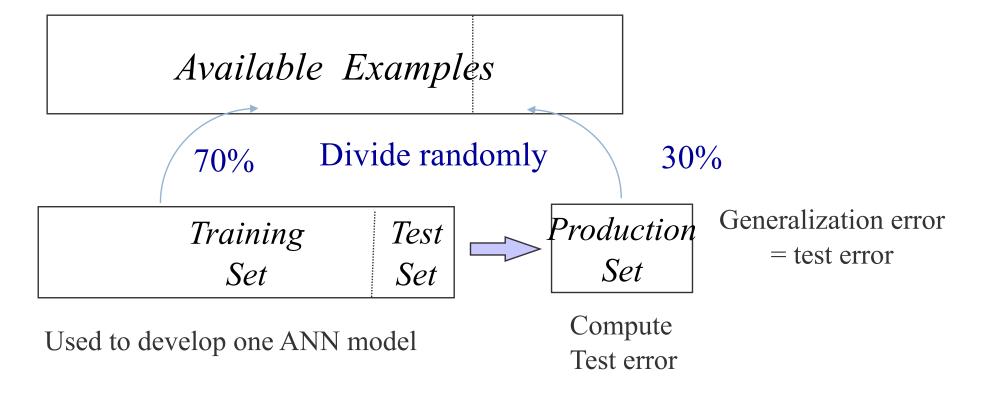
## How do you ensure that a network has been well trained?

- Objective: To achieve good generalization accuracy on new examples/cases
- Establish a maximum acceptable error rate
- Train the network using a validation test set to tune it
- Validate the trained network against a separate test set which is usually referred to as a production test set

# **Network Training**

Approach #1: Large Sample

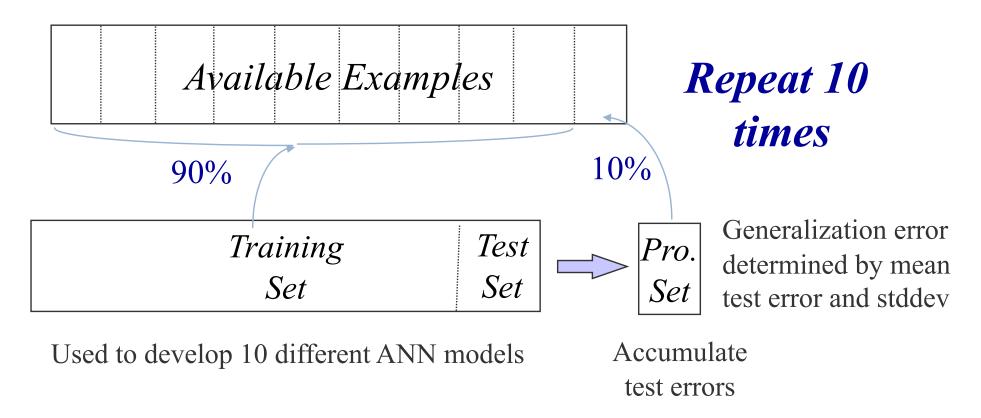
When the amount of available data is large ...



# **Network Training**

Approach #2: Cross-validation

When the amount of available data is small ...





# **Network Training: Mastering ANN Parameters**

Typical Range

learning rate -  $\eta$ 

0.1

0.01 - 0.99

momentum -  $\alpha$ 

8.0

0.1 - 0.9

• weight-cost -  $\lambda$ 

0.1

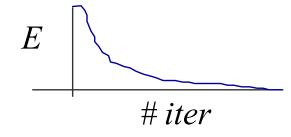
0.001 - 0.5

- Fine tuning: adjust individual parameters at each node and/or connection weight
  - automatic adjustment during training

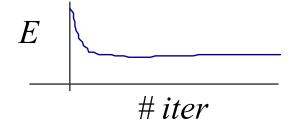


# **Typical Problems During Training**

Would like:

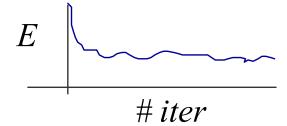


Steady, rapid decline in total error



Seldom a local minimum - reduce learning or

momentum parameter

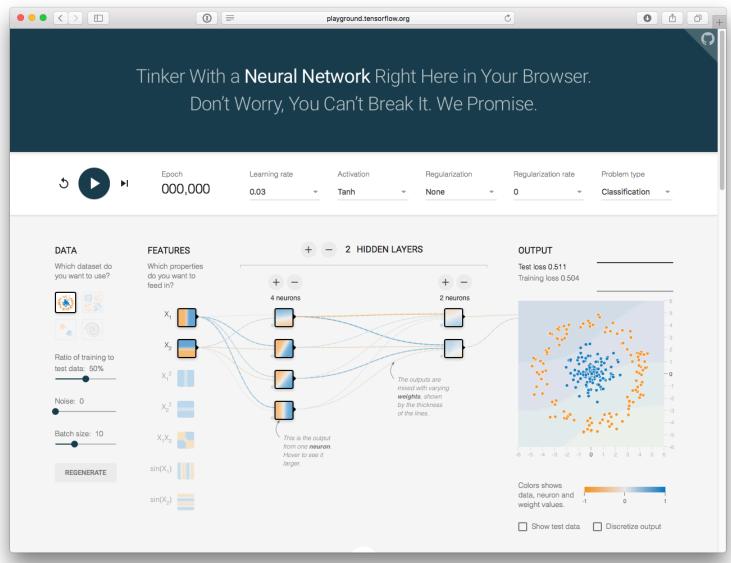


Reduce learning parms.

- may indicate data is not learnable



## **Playground**



http://playground.tensorflow.org/ [09.06.2017]

#### **Neural Networks vs. Decision Trees/Rules**

- Classification with Neural Networks is very good
- Decisions with neural networks are not comprehensible
- Decision Trees and Rules are often more trustworthy
  - Decisions with trees and rules are comprehensible and explainable
  - ♦ One can see which rules are applied to make a decision
- In applications, in which trust in the decision or explainability is important, people prefer decision trees or rules

Holger Wache Neural Networks 56