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Motivation: Recognizing Numbers

m Itis very hard to specify what makes a «2»
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m It is nearly impossible to create or learn symbolic rules.

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides lec1.pdf
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History of Artificial Neural Networks

m Creation:
¢ 1890: William James - defined a neuronal process of learning

m Promising Technology:
¢ 1943: McCulloch and Pitts - earliest mathematical models
¢ 1954: Donald Hebb and IBM research group - earliest simulations
¢ 1958: Frank Rosenblatt - The Perceptron

m Disenchantment:
¢ 1969: Minsky and Papert - perceptrons have severe limitations

m Re-emergence:

¢ 1985: Multi-layer nets that use back-propagation
¢ 1986: PDP Research Group - multi-disciplined approach
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ANN application areas ...

m Science and medicine: modeling, prediction, diagnosis,
pattern recognition

m Manufacturing: process modeling and analysis

m Marketing and Sales: analysis, classification, customer
targeting

m Finance: portfolio trading, investment support
m Banking & Insurance: credit and policy approval
m Security: bomb, iceberg, fraud detection

m Engineering: dynamic load schedding, pattern recognition
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The Neuron - A Biological Information Processor

m dentrites - the receivers

m soma - neuron cell body (sums
input signals)

Nucleus Axon terminal

Soma

(cell body)
Dendrite

\

m axon - the transmitter

\ = m synapse - point of transmission

m neuron activates after a certain
l threshold is met

|

Axon

Direction electrical impulse travels _ [ Le a rn i n g O CC u rS Vi a e I e Ct ro_

chemical changes in effectiveness
of synaptic junction.
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An Artificial Neuron - The Perceptron

m input connections - the receivers

m node, unit, or PE simulates B
neuron body o i i

/

Output

m output connection - the transmitter

m activation function — when is the

neuron activated 20 -
( ) 1 if X>Q axon from a neurorn. Syna’fjgwo
¢ eg. f(x)=
9-f 0 otherwise

m connection weights act as . cell body f(zwi:c.,t+b)

synapltic junctions o Y wizi +b|f -

: output axon

m Learning occurs via changes in ety

value of the connection weights. Wy Ty unction

© David Fumo: https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc
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Simple Type of Neuron: Linear Neuron

m Simple but computationally limited

bias i th input
i t
y=b+ E XW, y
4 : weight on 0
output - th
index over ™ Input 0 b+2x-w- ~
Input connections > o

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tiimen/csc321/slides/lecture slides lec1.pdf
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Binary Threshold Neurons

m McCulloch-Pitts (1943) 11‘
¢ First compute a weighted sum of the inputs. =
Q.
¢ Then send out a fixed size spike of activity if 3

the weighted sum exceeds a threshold. 0

threshold

m [here are two equivalent ways to write the | |
weighted input =—

equations for a binary threshold neuron:

z =Ex,.w,. Z =b+2xiwi
i 0=-b i

1if z=6 1if z=0
V= _ V= _
O otherwise O otherwise

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tiimen/csc321/slides/lecture slides lec1.pdf
Holger Wache Neural Networks 8




n w University of Applied Sciences and Arts Northwestern Switzerland
School of Business

Rectified Linear Neurons

m They compute a linear weighted sum of their inputs.

m The output is a non-linear function of the total input.

\<—>

0 otherwise 0 Z

Source: Geoffrey Hinton, https://www.cs.toronto.edu/~tiimen/csc321/slides/lecture slides lec1.pdf
Holger Wache Neural Networks 9
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Other activation functions
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An Artificial Neuron - The Perceptron

m Basic function of neuron is to sum inputs, and produce output
¢ E.g. given sum is greater than threshold (McCulloch-Pitts Neuron)

m ANN node j produces an output as follows:
1. Multiplies each component of the input pattern o; by the weight w;; of
its connection (w;;0;) 03
2. Sums all weighted inputs (X;=, w;;0;)

3. Transforms the total weighted input into Wq3 Ws3
the output using the
activation function (o; = f[X;=; w;;0;])

1 m 1
o W) s
Wy 1 | O Ip :

o Yo ll o[ ol F L,

o, —» B £ O 1 0 5

neuron B
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Feed-Forward Networks

“Distributed processing

Ol ' 02 ' and representation”
Output Nodes

has
2 active layers

Hidden Nodes

Input Nodes

t t t 1

I1 12 I3 14

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018]
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Exercise

m Design a Perceptron with McCulloch-Pitts Neuron with 2
iInputs and 1 output neuron(s) which operates an

¢ AND
¢ OR
¢ XOR

Holger Wache
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Learning: Backpropagation

m Backward Propagation of Errors, often abbreviated as
BackProp is one of the several ways in which an artificial
neural network (ANN) can be trained.

m Itis a supervised training scheme, which means, it learns
from labeled training data.

m [o putin simple terms, BackProp is like “learning from
mistakes”. The supervisor corrects the ANN whenever it
makes mistakes.

© https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/ [19.05.2020]
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The Back-propagation Algorithm

m On-Line algorithm:

1. Initialize weights
Present a pattern and target output

2.
3. Compute output:  o; = f[XiL,w;o0;] where f[x] =1/(1+e™%)
4. Update weights :  w;;(t + 1) = w;;(t) + Aw;;

m Repeat starting at 2 until acceptable level of error

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 16
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Calculating Aw;;

m Delta Rule (Widrow-Hoff)

n
AWij = T]d] Z WijOi
i=1
where 0 < n < 1 is the learning rate (typically set = 0.1)
d; = t; — o; is the error signal,
t; is the target value, and
o; is the output value

Holger Wache
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Calculating Aw;;

m Backpropagation for sigmoid activation functions:

OF
Wij = U(m

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Holger Wache
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Example Backprop

initial weights,
b1 b2 the biases, and
training inputs/outputs

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 19
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Example Backprop: Forward Pass

T f;i: s N': * )~_ + u'g * /2 —+—11: ‘A.rl

outp = ——p— = ——r— = .593269992
[0 144 netgl 14-¢ [

netp; = 0.15%0.05+ 0.2% 0.1 4+0.35 % 1 = 0.3775

b1.35 b2 .6l

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 20
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Example Backprop: Forward Pass

net,; = wy * outyy + wg * outys + by * 1

net,; = 0.4 % 0.593269992 4 0.45 % 0.596884378 + 0.6 * 1 = 1.105905967

out,; = T = T—r1owwwwr = 0.70136507

out s = (.096884378

b1.35 b2 .6l

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 21



https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

n w University of Applied Sciences and Arts Northwestern Switzerland
School of Business

Example Backprop: Error

Eiotal = Eo1 + E o = 0274811083 + 0.023560026 = 0.298371109

E,; = Ytarget,; — out,)? = 1(0.01 — 0.75136507) = 0.274811083

— E,, = 0.023560026

10 .89

b1.25 b2 .60

Holger Wache © hitps://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 22
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Example Backprop: Backward Pass

Cost

Initial
Weight

] Gradient
]

'I /

1

Incremental

Step

Minimum Cost

‘Himmf
s

b1.35

b2 .60

Derivative of Cost A R : 4
s ()L(nh.'( ‘)me{ * dout dnet gy
Weight Jws dout onet Jws
© https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f [19.05.2020]
dnet dout * DE; a1 _ IE; 10l
output durs, dnet ) dout dws,

h
w5
output
"4 E.o1 = Y(target o1 - out,;)?
Ewota =Eo1 +Eo
b2
1

Holger Wache
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Example Backprop: Backward Pass

net,; = wy * outyy + wg * outyy + by * 1
Ineto (1-1) ~O29¢6 ‘
-’# 1 * outyq * w: + 0+ 0 = out),; = .093269992
= 1 ) [
out,,; = — eto]
dout, ' \ 7126507 7E126507) EQ1SAN)
% — “Nf,-,'l_l — ()((f,;. _-' — “.{.)I.S(Jv)“{ ‘1 — “,{.)I.S(Jv)“{ ] = “ II\(JI\I'J(J“_)
onety) e e ‘
~ %k -~ X
OU':?ut ours dnet ) dout ;) durs,
."”" -~y L2 T ad e ~y Tl -~ O { =~ DI TN { i ory
—tetal — ), 74136507 * (L 186815602 = 0.593269992 = 0.082167041
°“,?z’"t E o1 'z %(target o - out,, )?
Etota =Eo1 +E o

]:'.ff‘:l".!!' —

i V9
ﬁl‘/('u'.(}r to1 — out,g)”

-+ _.;,l:/('n'.(}r too — r)((f,_;gi:'z
I i ‘ 1/ V21
JI‘—I," = 2% z(target,; —out, )" *—1+10
douly) & ) o '
l.. < - ! 3 ! ~c « ad =y ~\ -~ D Talw -~
J"‘—{" = —(target,y — out,y) = —(0.01 — 0.75136507) = 0.74136507
Jdouty) . e waes '
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Example Backprop: Backward Pass

Learning Rate

N\
V..

wi = 1wy — 1 x et — () 4 — 0.5 0.082167041 = 0.35891648
output
h1
w5
outt‘gut w6 E°1 = %(target o1”™ Out o1 )2

Etotal = Eo‘l + Eo2

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 25
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Example Backprop: Backward Pass

b1 b2

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 26
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Example Backprop Backward Pass (Hidden Layer)

- - .
,‘r"'f'"' —(target,; — out,y) = —(0.01 — 0.75136507) = 0. rllib)llr
Tt ) . ) e e e e e AR EE s EE RS EEERREEsREEEERREEnEE
y ':"‘: L = out (1 — out, ) = 0.70136007(1 — 0.75136507) = 0.186815602
‘- ““ Ui 1 : . "
-“ ““‘ ----------- ety e eemmmssmsEmEEEEE RN AR AR AN NN RERERARARAN NN RERERARARARAn R
L ppparntiIIIIII e
dEo1 — dFo1 o, doutel _ () 74136507 * 0.186815602 = 0.138498562
dnet ) dout,) dnet,)
AEol _ dF. 4 dneto) net,y = wy * outy + wg * outyo + by * |
douty dnet,) douty
gnetol, — gy = ().4()
L'!J-‘.’(,',I ’
AEcl . dEq . dnetol 138498562 = 140 = 1105533959025
Aoty Anet ) Aoty
.'— = — 10190491159
12\ &1
cetetal — AEel 4 dEes — ) (155399425 4+ —0L019049118 = 0.036350306

Eota =Eo1+Eo

Holger Wache
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Example Backprop: Backward Pass (Hidden Layer)

Tl fh: o N': * ;: _+_ ta * /_) —+— ]): * ]

dnety, . -
il — 4y = 0.05
dun .
outyy = el
[ Lo neth]
douty, 1 \ AN 1D T { - DI T \ i ‘ ~r
S = Oulyy (1 — outy;) = 0.09326999(1 — 0.59326999) = 0.241300709
onely | - .
.’.”" i 3 Talls T C g i . y -y . o 5l @]
iotal — [).036350306 * 0.241300709 = 0.05 = 0.000438568
IE total - IE total * douty) x dnety) bt
IJ.‘A’[ I.",i.'.'f’:‘l ‘ I.‘.'.'!fr'l , I-.-'l'l
Eo1
AF ‘ arFr e -- - T ala 1=t a 2T e e
“ '{[ — """’I —+— .“'(._ — ll_'lw'w'lj!.“.'4_}" + —'I"ll!Jl'*l!.'] ]!_' — 'l‘llu_:))'_'u_:))vl"lu:))llt’
()| Ll 1 MU 1
Ex

Eota =Eo1+Eo

b1 b2
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Example Backprop: Backward Pass (Hidden Layer)

wy = wy —n * "rj'—l" = (.15 — 0.5 % 0.000438568 = (0.149780716

Eita TEq1+Eq

b1 b2

Holger Wache © https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ [19.05.2020] 29
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Backpropagation Learning

Hidden layer(s)

Input layer Output layer

1. Diff. to desired values

Braunl 2003 8

Visualization of the Backprop-Learning

Backpropagation Learning

Input layer

Hidden layer(s)

7@

Output layer

3. Hidden error values

Input layer

Braunl 2003

Hidden layer(s)

o

Backpropagation Learning

Output layer

1. Diff. to desired values
2. Backprop output layer

9

Backpropagation Learning

Hidden layer(s)

Output layer

4.and soon ...

Braunl 2003

3. Hidden error values

Holger Wache
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Generalization — A Probabilistic Guarantee

m N =# hidden nodes m = # training cases
m W =# weights e = error tolerance (< 1/8)

m Network will generalize with 95% confidence if:

1. Error on training set < e/2

2.

>0W1 N >W
m > 0(—log, =) ~m> -

m Based on PAC theory = provides a good rule of practice.

m If m is given then hidden nodes can be estimated!

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 31
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Generalization: 20-bit parity problem

m 20-20-1 net has 441 weights (n + 1)?weights

m For 95% confidence that net will predict with < e = 0.1, we
need this amount of training examples

Parity bit value

n bits of input
2™ possible examples

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 32
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NETWORK TYPES

Holger Wache
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Deep Neural Networks

"Non-deep" feedforward
neural network

hidden layer

input layver
input layer

— output layer <

Holger Wache

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

VR

output layer

Neural Networks
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Convolutional Neural Networks (CNN)

Holger Wache  © https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/ [04.06.2018] 35
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Convolutional Neural Networks (CNN)

Convolutional
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Convolutional
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Convolutional Neural Networks (CNN)

60

10

24

42

20

Image

10
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20

20

0 | 02
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ORNIRO'2

3x3 fitter

80x0.4 + 4x0.2x10=40

722 T e e A z23 —TT z24

Stride = 1
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Convolutional Neural Networks (CNN)

Single depth slice
1 0O 2 3

4 6 6 8
3 1 1 O 3 4
1 2 2 4

Y

Example of Maxpool with a 2x2 filter and a stride of 2

Holger Wache © https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ [19.05.2020] 38
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CNN: Learning MNIST
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https://colab.research.google.com/qithub/Hvass-Labs/TensorFlow-
Tutorials/blob/master/02_Convolutional_Neural_Network.ipynb#scroll To=Q7kAPMNP9FZK [19.05.2020]
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Recurrent Neuronal Network (RNN)

Input: Stateful Model Output:
a Word Most likely next word

—> Recurrent
Neural Network

Memory of previous words
influence next predicition

Output so far:
Machine

Holger Wache  © https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/ [04.06.2018] 40
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Kohonen Maps

Competition layer

Input layer
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Modular Neural Networks (The Hit!)

* Independent Networks

Inputs

Output

4NN

YARVaY,

Holger Wache  © https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/ [04.06.2018] 42
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O Backfed Input Cell

: ) Input Cell

A Noisy Input Cell

@ Hidden Cell

. Probablistic Hidden Cell
@ spiking Hidden Cell

. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell
. Different Memory Cell

i Kernel

O Convolution or Pool

Markov Chain (MC) Hopfield Net:

Deep Convolutional Network (DCN)

|><|><|><|><|

Generative Adversarial Network (GAN)

¥ .
RS

AWAVAWAWAWS

Deep Residual Network (DRN)

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

AVAN
R X

Perceptron (P)

Feed Forward (FF) Radial Basis Network (RBF)
N

R

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
O 0O [ 0 0 0O

SRR
XIBRIRXY

. Y
RV

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE) Sparse AE (SAE)

work (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

X o o 05
X o 0
>—< .\.O/Q Q\O/" ,
O N D
X, 0 ol

Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

e i

Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

© https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464 [04.06.2018]
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Architecture of the network

m How many nodes?
m Determines number of network weights
m How many layers?

m How many nodes per layer?
¢ Input Layer Hidden Layer Output Layer

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 45



n w University of Applied Sciences and Arts Northwestern Switzerland
School of Business

Architecture of the network: Connectivity

m Concept of model or hypothesis space

m Constraining the number of hypotheses:
¢ selective connectivity
¢ shared weights
¢ recursive connections

 I—

I\ R

/ \ s ;«\
N\
Y/

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 46
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Structure of artificial neuron nodes

m Choice of input integration:

¢ summed, squared and summed

¢

multiplied

m Choice of activation (transfer) function:

¢ sigmoid (logistic)
¢ hyperbolic tangent -
_ M

¢ Guassian '

¢ linear j\ —

¢ soft-max /
/]
7

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 47
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Selecting a Learning Rule (Optimizer)

m Generalized delta rule (steepest descent)
m Momentum descent
m Advanced weight space search techniques

m Global Error function can also vary
¢ Normal
¢ quadratic
¢ cubic

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 48
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NETWORK TRAINING
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How do you ensure that a network has been well
trained?

m Objective: To achieve good generalization accuracy on new
examples/cases

m Establish a maximum acceptable error rate
m [rain the network using a validation test set to tune it

m Validate the trained network against a separate test set which
Is usually referred to as a production test set

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 50
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Network Training

Approach #1: Large Sample

When the amount of available data is large ...

Available Examplé:s

70% Divide randomly 30%
Training Test roduction Generalization error
- = test error
Set  Set Set
Used to develop one ANN model Compute
Test error

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 51



n w University of Applied Sciences and Arts Northwestern Switzerland
School of Business

Network Training

Approach #2: Cross-validation

When the amount of available data is small ...

 Available Examples Repeat 10
E— times
90% 10%
Trainin  Test I3 Generalization error
& — > 0. determined by mean
Sel et Set | test error and stddev
Used to develop 10 different ANN models Accumulate
test errors

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 52
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Network Training: Mastering ANN Parameters

m [ypical Range

¢ learning rate - n 0.1 0.01-0.99
¢ momentum - « 0.8 0.1-0.9
¢ weight-cost - 4 0.1 0.001-0.5

m Fine tuning : adjust individual parameters at each node
and/or connection weight

¢ automatic adjustment during training

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 53
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Typical Problems During Training

. E N Steady, rapid decline
Would like: | in total error
# iter
E Seldom a local minimum
- reduce learning or
# iter momentum parameter
E Reduce learning parms.
- may indicate data is
# iter not learnable

Holger Wache © plato.acadiau.ca/courses/comp/dsilver/5013/Slides/ANN_ml.ppt [04.06.2018] 54
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Playground

Tinker With a Neural Network Right Here in Your Browser.

playground.tensorflow.org

Don't Worry, You Can't Break It. We Promise.

Epoch
S ° 000,000

FEATURES
Which properties
do you want to
feed in?

X,

X,

DATA

Which dataset do

you want to use?

Ratio of training to D
test data: 50%

—e

Noise: 0

Batch size: 10

—e

REGENERATE

Learning ra
0.03
+ -—
4 neurons

oo

o4

Activation

Tanh

neuron.

— 2 HIDDEN LAYERS

Regularization

None

+ -

2 neurons

0

Regularization rate

Problem type

Classification

OUTPUT

Test loss 0.511
Training loss 0.504

Colors shows -
data, neuronand ! !

weight values

[ Showtestdata [] Discretize output

http://playground.tensorflow.org/ [09.06.2017]
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Neural Networks vs. Decision Trees/Rules

m Classification with Neural Networks is very good
m Decisions with neural networks are not comprehensible

m Decision Trees and Rules are often more trustworthy
¢ Decisions with trees and rules are comprehensible and explainable
¢ One can see which rules are applied to make a decision

m In applications, in which trust in the decision or explainability
Is important, people prefer decision trees or rules

Holger Wache Neural Networks 56



