
Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modelling and Metamodelling

Knut Hinkelmann

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Ontology Engineering

internal knowledge external knowledge

tacit
knowledge

in heads of people

self-aware
knowledge

in heads of people

documented
knowledge
in documents/

databases

formal
knowledge
program code

knowledge bases

knowledge evolution

people organisation information
technology

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

internal knowledge external knowledge

tacit
knowledge

in heads of people

self-aware
knowledge

in heads of people

documented
knowledge
in documents/

databases

formal
knowledge
program code

knowledge bases

knowledge evolution

people organisation information
technology

A Two-step Approach for Building a Knowledge Base

internal knowledge external knowledge

tacit
knowledge

in heads of people

self-aware
knowledge

in heads of people

documented
knowledge
in documents/

databases

formal
knowledge
program code

knowledge bases

knowledge evolution

people organisation information
technology

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Models

■ A Model is a reproduction of a relevant part of reality which
contains the essential aspects to be investigated.

■ Relevance depends on the
♦ purpose (also called concern or goal)
♦ stakeholders

real object models (plan)

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ There can be different kinds of models
♦ textual model
♦ graphical model
♦ conceptual models
♦ mathematical model
♦ physical model

Models

E = m c2

The Application Process
In the business process for
health insurance, first the
application data are captured
by the clerk. Then the risk
assessment is made by the
underwriter. Depending on the
risk score, the clerk determines
the premiums and sends the
policy or the application is
rejected.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ A picture is worth a thousand words

■ Graphical Models are easier to understand than text

Visual Communication

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

In the business process for health insurance application,
the application data are captured by the clerk. Then the
underwriter makes the risk assessment. Depending on the
risk score, the clerk determines the premiums and sends
the policy or the application is rejected.

Experiment: Text vs. Model (1)

■ Is «application is captured» a task or an event?

■ Which tasks are executed in parallel?

■ Who rejects the application?

Process description:

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

In the business process for health insurance application,
the application data are captured by the clerk. Then the
underwriter makes the risk assessment. Depending on the
risk score, the clerk determines the premiums and sends
the policy or the application is rejected.

Experiment: Text vs. Model (2)

■ Is «application is captured» a task or an event?

■ Which tasks are executed in parallel?

■ Who rejects the application?

Process description:

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Enterprise Models

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Models

Reality

Communication/
Analysis/
Decision Making

KnowledgeHuman Problem Solving

human-interpretable models

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Models and Modelling

Modelling
Describing and representing all relevant aspects of
a domain in a defined modelling language.
Result of modelling is a model.

Model
A reproduction of the part of reality which contains
the essential aspects to be investigated.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model in Architecture

real object model

house architect’s drawing
(plan)

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model and Modelling Language in Architecture

real object model

house architect’s drawing
(plan)

modelling language
(concrete syntax)

wall

door

window

object types:

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modelling
Language

created with
Model

Reality

indirect
model of

Modelling Language

■ A modelling "language"
specifies the building blocks
(elements) from which a model
can be made.

■ There can be different types of
modelling languages,
depending on the kind of model

♦ graphical model
♦ textual description
♦ mathematical model
♦ conceptual model

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ModelModelling
Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ModelModelling
Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model and Meta-Model in Architecture

real object model meta-model
(abstract syntax)

object types:
• wall
• door
• window

rules:
• a door is adjacent to

a wall on both sides
• Windows are on

outer walls.

house architect’s drawing
(plan)

modelling language
(concrete syntax)

object types:

wall

door

window

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-model
A meta-model defines the semantics
of the modelling language, i.e. the
building blocks that can be used to
make a model. It defines the

♦ object types that can be used
to represent a model

♦ relations between object types
♦ attributes of the object types
♦ rules to combine object types

and relations

■ The meta-model is the abstract
syntax, the modelling language is
the concrete syntax.

direct model of

Meta-model

indirect
model of

Modelling
Language

created with
Model

Reality

model of

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta Model vs Model Language =
Abstract vs. Concrete Syntax
Abstract Syntax

■ Deep structure of a
language.

■ What are the significant
parts of the expression?

■ Example: a sum expression has
two operand expressions as its
significant parts

Concrete Syntax

■ Surface level of a language.

■ What does the expression
look like?

http://www.cse.chalmers.se/edu/year/2011/course/TIN321/lectures/proglang-02.html

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

What is the Meaning (Semantics) of a Modelling
Language?

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodel and Modelling Language

Metamodel
■ The metamodel defines the modelling elements (concepts,

relations) and their semantics (= meaning)
♦ WHAT can be modeled

■ The metamodel corresponds to the abstract syntax

Modelling language
■ The modelling language defines the notation/appearance of

the modelling elements
♦ HOW can it be modeled

■ The modelling language corresponds to the concrete syntax

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Illustration: Meta-model and Model for Processes

Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“
represents a real entity; it is an
instance of the object type «task"

Metamodel:

Modelling
Language:
Concrete syntax:
Notation/appearance of
meta-model elements

task

event

gateway

data object

sequence flow
data association

subprocess

Abstract syntax:
Concepts and relations
which can be used to create
models.

Example: A process model
consists of concepts for
• «task», «subprocess»,

«event», «gateway»,
«data object»

and relations for
• «sequence flow»,

«data association».

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Components of Modelling Methods

(Karagiannis & Kühn 2002)

A Modelling Language is Part of a Modelling Modelling
A Modelling Language consists of the Metamodel (Abstract Syntax and Semantics) and the Notation

MetamodelConcrete
Syntax

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Language Level Models Language Name

created with Meta2-Modelling
Language

created with Metamodelling
Language

Modelling
Language

created with

Level 3 Meta2-Model
direct

model of
indirect
model of

direct
model of

Level 2 Metamodel
indirect
model of

Level 1 Model

Reality

model of

Meta Model Hierarchy

The meta-model must again be described in some language, which has to be
specified in a meta-meta-model

Karagiannis, D. & Kühn, H., 2002. Metamodelling Platforms. In K. Bauknecht, A. Min Tjoa, & G. Quirchmayer, eds. Proceedings of
the Third International Conference EC-Web at DEXA 2002. Berlin: Springer-Verlag.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch 25

Metamodelling
Modeling Language Definition

(Karagiannis & Kühn, 2002)(Strahringer, 1996)

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

The Model Stack

■ A model is a simplified
representation of a reality

■ A meta-model defines a
modelling language in which a
model can be expressed.

■ A meta-meta model defines the
language in which a meta-
model can be expressed.

M0: Reality

M1: model

M2: meta-model

M3: meta-meta-model

describes instance of

describes instance of

describes instance of

describes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodels can be defined as Class Diagrams

(UML Class diagrams where originally designed for modelling in object-oriented programming. This
is why they contain operations and other features, which are not relevant for most modelling
languages)

Metamodel correspond to a knowledge base
Metamodels can be represented graphically as (a subset of) UML class diagrams

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

A Metamodel for Processes

Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“
represents a real entity; it is an
instance of the object type «task"

Meta-model:
• Classes and relations that can

be used for modelling

Modelling Language:
Concrete Syntax (notation,
appearance) of meta-model
elements

task

event

gateway

data object

sequence flow
data association

subprocess

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Subset of the BPMN Metamodel in UML

Source: BPMN 2.0 specification

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-Modelling Langauge has to be defined in a Meta-
Meta Model

Meta2 Model:

Abstract syntax:
Concepts and relations which
can be used to create
models.

Example: A class and object
diagram consists of concepts
for
• «classes», «instances»,

and relations for
• «association»,

«generalization»,
«aggregation» and
«composition»

Meta-Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“
represents a real entity; it is an
instance of the object type «task"

Meta- Modelling
Language:
Concrete Syntax (notation,
appearance) of meta-model
elements

Class

Instance

Association

Generalization

Aggregation

Composition

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

A Metamodel for UML Class Diagrams

(UML Class diagrams where originally designed for modelling in object-oriented programming. This
is why they contain operations and other features, which are not relevant for most modelling
languages)

UML Class Diagrams can be used to model the metamodel for UML class
diagrams themselves

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

UML Class Diagrams can be used for Meta-Meta-Model

(Meta)model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“
represents a real entity; it is an
instance of the object type «task"

Meta(Meta)-model:
• Classes and relations that can

be used for modelling

(Meta-) Modelling
Language:
Concrete Syntax (notation,
appearance) of meta-model
elements

Class

Instance

Association

Generalization

Aggregation

Composition

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Domain-specific vs. General-purpose Modelling
Languages

■ General-purpose modelling languages can be used to
represent any kind of knowledge

■ Domain-specific languages are notations which are
defined to model knowledge about a specific domain

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

General-purpose Modelling Languages

■ General-purpose modelling languages can be used to represent any kind
of knowledge

■ They can be used, if no domain-specific modelling language is available
(for a view)

■ There are a wide range of generalo-purpose modelling languages
♦ Natural language allows to express any knowledge
♦ Formal languages: Typically a subset of Logic
♦ Graphical Diagrams

■ General-purpose graphical modelling languages have been developed in a
many difference fields:
♦ Artificial Intelligence: Semantic networks, Ontologies
♦ Data Modelling: Entity Relationship Diagrams
♦ Object-Oriented Programming: UML Class Diagrams

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

The Metamodel for a General-purpose Modelling
Language

■ The metamodel for a general-purpose modelling language has only few modelling
elements
♦ Class
♦ Attribute
♦ Association
♦ Instance

■ This can be modelled with Class Diagrams, e.g.
♦ (a subset of) UML Class Diagrams
♦ Ontology Languages

■ Modelling means to
♦ define classes
♦ create instances of these classes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modelling with a General-purpose Modelling Language

Classes
(=metamodel)

Instances
(= model)

■ Class Diagrams are general-purpose modelling languages; one
can define classes and relations for any domain

■ A model consists of objects which are instances of these classes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Strengths and Weaknesses of General-Purpose
Modelling Languages

■ Strengths
♦ Applicability

● Can be used to represent everything
● Every model in the same language
● Low learning curve for the language

■ Weakness
♦ No guidance: Users have to …

● determine how to structure a domain
● to identify relevant concepts

♦ Restrictred reusability
● Different applications use different concepts

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Domain-specific Modelling Languages

■ Modelling languages have modelling elements for typical concepts
and relations of a domain of discourse
♦ Predefined classes, relations and constraints
♦ Specific shapes for modelling elements and relations

■ Modelling means to create instances of theses classes and
relations

■ Examples of domain-specific modelling languages:
♦ BPMN is a domain-specific language for business processes

● Concepts: task, event, gateway, ….
● Relations: sequence flow, message flow, data association, …

♦ ArchiMate is a domain-specific language for enterprise
architectures
● Concepts: process, actor, role, business object, …
● Relations: uses, realizes, …

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Strengths and Weaknesses of Domain-specfic
Modelling Languages

■ Strengths
♦ Comprehensiblity of models

● concepts and relations are adequate for stakeholders
● domain-specific shapes

♦ Standardisation: Reuse of models
● Common concepts for a domain (e.g. BPMN, ArchiMate)

■ Weaknesses
♦ Restricted to a specific domain

● Only what can be expressed with the modelling elements can
be modeled

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ If there is no domain-specific modelling language for a domain
of interest, we can
1. Use a general-purpose modelling language
2. Define a new domain-specific modelling language

● From scratch
● By adapting an existing one

 meta modelling

What do we do if there is no Domain-specific
Modelling Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Knowledge Work Designer

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modeling of Knowledge Work

■ Process Logic
♦ Structured Processes (BPM)
♦ Case Models (CMMN)
♦ Combination (BPCMN)

■ Decision Logic
♦ Decision Models (DMN)
♦ Document Model

Details and Download: https://austria.omilab.org/psm/content/kwd/

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model types of the Knowledge Work Designer

Business Process Modelling
(BPMN)

Process and Case
Modelling

(BPCMN)

Case Management
Modelling

(CMMN)

Decision
Modelling

(DMN)

Document
Modelling

Organisation Modelling

Process Logic Business Logic

de
gr

ee
 o

f s
tru

ct
ur

e

C
on

tro
l

El
em

en
ts

Pl
an

ni
ng

El

em
en

ts

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodelling with ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

adoxx.org – Download, Tutorials, Community

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

OMiLAB – A Conceptual Modelling Commnity
ADOxx is the basis for OMiLAB

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx consists of …
♦ ADOxx Development Toolkit

● Defining Modelling languages – Library Management
● Administration of users, models, components

♦ ADOxx Modelling Toolkit
● Creating models

The ADOxx Environment

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

human interpretable machine interpretable

Graphical Models are Represented in a Database

48

Models

Reality

Knowledge
application

Data Scripts

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

notations

model

model
layer

metamodel
layer

meta2-model
layer

classes

Definition of syntax and (type) semantics

Modeling Environment

49

ADOxx Development Toolkit

ADOxx Modeling Toolkit

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Start Development Toolkit

■ Login
♦ Username: Admin
♦ Password: password
♦ DB: adoxxdb

(or the one you created
during installation=

Development Toolkit

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodelling with ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta Modelling Platforms Hierarchyin ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta2 Model: Meta Model of Meta Modelling Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

The AMME LifeCycle
Agile Meta Model Engineering

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Development Appraoches in ADOxx –
Configuration and Implementation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ The Semantics of a model language is defined by
♦ Classes of elements and relations
♦ Class hierarchy
♦ Attributes of the elements

■ The Syntax is defined by
♦ special attribute GraphRep

Abstract and Concrete Specification

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Appearance of Classes in the Modelling Toolkit

Classes

Relations classes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Views of the Class Hierarchy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Icons in Class Hierarchy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Attributes

■ Kinds of Attributes
♦ Properties of Models
♦ Graphical Representation
♦ References

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Defining a new Attribute

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Examples of Attributes
Performer

Task Type

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

References
Referencing a Subprocess

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Special Attribute GraphRep
GraphRep: A script language for the graphical representation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

GraphRep Elements

■ Types of elements
♦ Style elements
♦ Shape elements
♦ Variable assigning

elements
♦ Context elements
♦ Control elements

■ Elements are placed on x-y-axes

GraphRep Elements

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

GraphRep Examples

Conditional Representation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

AttrRep
The class attribute „AttrRep“ controls the structure of the ADOxx-Notebook.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model Types: Represention Views on the Knowledge

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Classes are assigned to Model Types

	Modelling and Metamodelling
	Ontology Engineering
	A Two-step Approach for Building a Knowledge Base
	Models
	Models
	Visual Communication
	Experiment: Text vs. Model (1)
	Experiment: Text vs. Model (2)
	Enterprise Models
	Human Problem Solving
	Models and Modelling
	Model in Architecture
	Model and Modelling Language in Architecture
	Modelling Language
	Foliennummer 15
	Foliennummer 16
	Model and Meta-Model in Architecture
	Meta-model
	Meta Model vs Model Language =�Abstract vs. Concrete Syntax
	What is the Meaning (Semantics) of a Modelling Language?
	Metamodel and Modelling Language
	Illustration: Meta-model and Model for Processes
	Components of Modelling Methods
	Meta Model Hierarchy
	Metamodelling�Modeling Language Definition
	The Model Stack
	Metamodels can be defined as Class Diagrams
	A Metamodel for Processes
	Subset of the BPMN Metamodel in UML
	Meta-Modelling Langauge has to be defined in a Meta-Meta Model
	A Metamodel for UML Class Diagrams
	UML Class Diagrams can be used for Meta-Meta-Model
	Domain-specific vs. General-purpose Modelling Languages
	General-purpose Modelling Languages
	The Metamodel for a General-purpose Modelling Language
	Modelling with a General-purpose Modelling Language
	Strengths and Weaknesses of General-Purpose Modelling Languages
	Domain-specific Modelling Languages
	Strengths and Weaknesses of Domain-specfic Modelling Languages
	What do we do if there is no Domain-specific Modelling Language
	Knowledge Work Designer
	Modeling of Knowledge Work
	Model types of the Knowledge Work Designer
	Metamodelling with ADOxx
	adoxx.org – Download, Tutorials, Community
	OMiLAB – A Conceptual Modelling Commnity
	The ADOxx Environment
	Graphical Models are Represented in a Database
	Modeling Environment
	Development Toolkit
	Metamodelling with ADOxx
	Foliennummer 52
	Meta Modelling Platforms Hierarchyin ADOxx
	Meta2 Model: Meta Model of Meta Modelling Language
	Foliennummer 55
	The AMME LifeCycle�Agile Meta Model Engineering
	Development Appraoches in ADOxx – �Configuration and Implementation
	Abstract and Concrete Specification
	Class Hierarchies
	Class Hierarchies
	Appearance of Classes in the Modelling Toolkit
	Views of the Class Hierarchy
	Icons in Class Hierarchy
	Attributes
	Defining a new Attribute
	Examples of Attributes
	References
	Special Attribute GraphRep
	GraphRep Elements
	GraphRep Examples
	AttrRep
	Model Types: Represention Views on the Knowledge
	Classes are assigned to Model Types

