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Models

■ A Model is a reproduction of a relevant part of reality which
contains the essential aspects to be investigated.

■ Relevance depends on the
♦ purpose (also called concern or goal)
♦ stakeholders

real object models (plan)
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■ There can be different kinds of models
♦ textual model
♦ graphical model
♦ conceptual models
♦ mathematical model
♦ physical model

Models

E = m c2

The Application Process
In the business process for
health insurance, first the
application data are captured
by the clerk. Then the risk
assessment is made by the
underwriter. Depending on the
risk score, the clerk determines
the premiums and sends the
policy or the application is
rejected.
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■ A picture is worth a thousand words

■ Graphical Models are easier to understand than text

Visual Communication
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In the business process for health insurance application, 
the application data are captured by the clerk. Then the
underwriter makes the risk assessment. Depending on the
risk score, the clerk determines the premiums and sends
the policy or the application is rejected.

Experiment: Text vs. Model (1)

■ Is «application is captured» a task or an event?

■ Which tasks are executed in parallel?

■ Who rejects the application?

Process description:
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In the business process for health insurance application, 
the application data are captured by the clerk. Then the
underwriter makes the risk assessment. Depending on the
risk score, the clerk determines the premiums and sends
the policy or the application is rejected.

Experiment: Text vs. Model (2)

■ Is «application is captured» a task or an event?

■ Which tasks are executed in parallel?

■ Who rejects the application?

Process description:
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Enterprise Models
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Models

Reality

Communication/
Analysis/
Decision Making

KnowledgeHuman Problem Solving

human-interpretable models
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Models and Modelling

Modelling
Describing and representing all relevant aspects of 
a domain in a defined modelling language. 
Result of modelling is a model.

Model
A reproduction of the part of reality which contains
the essential aspects to be investigated.
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Model in Architecture

real object model

house architect’s drawing
(plan)
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Model and Modelling Language in Architecture

real object model

house architect’s drawing
(plan)

modelling language
(concrete syntax)

wall

door

window

object types:
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Modelling 
Language

created with
Model

Reality

indirect 
model of

Modelling Language

■ A modelling "language" 
specifies the building blocks
(elements) from which a model
can be made.

■ There can be different types of
modelling languages, 
depending on the kind of model

♦ graphical model
♦ textual description
♦ mathematical model
♦ conceptual model
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ModelModelling
Language
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Language
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Model and Meta-Model in Architecture

real object model meta-model
(abstract syntax)

object types:
• wall
• door
• window

rules:
• a door is adjacent to

a wall on both sides
• Windows are on 

outer walls.

house architect’s drawing
(plan)

modelling language
(concrete syntax)

object types:

wall

door

window
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Meta-model
A meta-model defines the semantics
of the modelling language, i.e. the
building blocks that can be used to
make a model. It defines the

♦ object types that can be used
to represent a model

♦ relations between object types
♦ attributes of the object types
♦ rules to combine object types

and relations

■ The meta-model is the abstract
syntax, the modelling language is
the concrete syntax.

direct model of

Meta-model

indirect 
model of

Modelling 
Language

created with
Model

Reality

model of
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Meta Model vs Model Language =
Abstract vs. Concrete Syntax
Abstract Syntax

■ Deep structure of a 
language.

■ What are the significant 
parts of the expression?

■ Example: a sum expression has 
two operand expressions as its 
significant parts 

Concrete Syntax

■ Surface level of a language.

■ What does the expression 
look like? 

http://www.cse.chalmers.se/edu/year/2011/course/TIN321/lectures/proglang-02.html
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What is the Meaning (Semantics) of a Modelling 
Language?
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Metamodel and Modelling Language

Metamodel
■ The metamodel defines the modelling elements (concepts, 

relations) and their semantics (= meaning)
♦ WHAT can be modeled

■ The metamodel corresponds to the abstract syntax

Modelling language
■ The modelling language defines the notation/appearance of 

the modelling elements
♦ HOW can it be modeled

■ The modelling language corresponds to the concrete syntax
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Illustration: Meta-model and Model for Processes

Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“ 
represents a real entity; it is an 
instance of the object type «task"

Metamodel:

Modelling 
Language:
Concrete syntax:
Notation/appearance of
meta-model elements

task

event

gateway

data object

sequence flow
data association

subprocess

Abstract syntax: 
Concepts and relations
which can be used to create
models.

Example: A process model
consists of concepts for
• «task», «subprocess», 

«event», «gateway», 
«data object» 

and relations for
• «sequence flow»,

«data association». 
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Components of Modelling Methods

(Karagiannis & Kühn 2002)

A Modelling Language is Part of a Modelling Modelling
A Modelling Language consists of the Metamodel (Abstract Syntax and Semantics) and the Notation

MetamodelConcrete
Syntax
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Language Level Models Language Name

created with Meta2-Modelling 
Language

created with Metamodelling
Language

Modelling 
Language

created with

Level 3 Meta2-Model
direct 

model of
indirect 
model of

direct 
model of

Level 2 Metamodel
indirect 
model of

Level 1 Model

Reality

model of

Meta Model Hierarchy

The meta-model must again be described in some language, which has to be
specified in a meta-meta-model

Karagiannis, D. & Kühn, H., 2002. Metamodelling Platforms. In K. Bauknecht, A. Min Tjoa, & G. Quirchmayer, eds. Proceedings of
the Third International Conference EC-Web at DEXA 2002. Berlin: Springer-Verlag.
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Metamodelling
Modeling Language Definition

(Karagiannis & Kühn, 2002)(Strahringer, 1996)
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The Model Stack

■ A model is a simplified 
representation of a reality

■ A meta-model defines a 
modelling language in which a 
model can be expressed.

■ A meta-meta model defines the 
language in which a meta-
model can be expressed.

M0: Reality

M1: model

M2: meta-model

M3: meta-meta-model

describes instance of

describes instance of

describes instance of

describes
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Metamodels can be defined as Class Diagrams

(UML Class diagrams where originally designed for modelling in object-oriented programming. This 
is why they contain operations and other features, which are not relevant for most modelling
languages)

Metamodel correspond to a knowledge base
Metamodels can be represented graphically as (a subset of) UML class diagrams
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A Metamodel for Processes

Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“ 
represents a real entity; it is an 
instance of the object type «task"

Meta-model:
• Classes and relations that can

be used for modelling

Modelling Language:
Concrete Syntax (notation, 
appearance) of meta-model 
elements

task

event

gateway

data object

sequence flow
data association

subprocess
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Subset of the BPMN Metamodel in UML

Source: BPMN 2.0 specification
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Meta-Modelling Langauge has to be defined in a Meta-
Meta Model

Meta2 Model:

Abstract syntax: 
Concepts and relations which
can be used to create
models.

Example: A class and object
diagram consists of concepts
for
• «classes», «instances»,

and relations for
• «association»,

«generalization», 
«aggregation» and 
«composition»

Meta-Model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“ 
represents a real entity; it is an 
instance of the object type «task"

Meta- Modelling 
Language:
Concrete Syntax (notation, 
appearance) of meta-model 
elements

Class

Instance

Association

Generalization

Aggregation

Composition
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A Metamodel for UML Class Diagrams

(UML Class diagrams where originally designed for modelling in object-oriented programming. This 
is why they contain operations and other features, which are not relevant for most modelling
languages)

UML Class Diagrams can be used to model the metamodel for UML class
diagrams themselves
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UML Class Diagrams can be used for Meta-Meta-Model

(Meta )model:

A model contains instances of the
object types defined in the meta-
model, according to the concrete
syntax of the modelling language.
The object „confirm order“ 
represents a real entity; it is an 
instance of the object type «task"

Meta(Meta)-model:
• Classes and relations that can

be used for modelling

(Meta-) Modelling 
Language:
Concrete Syntax (notation, 
appearance) of meta-model 
elements

Class

Instance

Association

Generalization

Aggregation

Composition
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Domain-specific vs. General-purpose Modelling 
Languages

■ General-purpose modelling languages can be used to
represent any kind of knowledge

■ Domain-specific languages are notations which are
defined to model knowledge about a specific domain
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General-purpose Modelling Languages

■ General-purpose modelling languages can be used to represent any kind
of knowledge

■ They can be used, if no domain-specific modelling language is available
(for a view)

■ There are a wide range of generalo-purpose modelling languages
♦ Natural language allows to express any knowledge
♦ Formal languages: Typically a subset of Logic
♦ Graphical Diagrams

■ General-purpose graphical modelling languages have been developed in a 
many difference fields:
♦ Artificial Intelligence: Semantic networks, Ontologies
♦ Data Modelling: Entity Relationship Diagrams
♦ Object-Oriented Programming: UML Class Diagrams
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The Metamodel for a General-purpose Modelling 
Language

■ The metamodel for a general-purpose modelling language has only few modelling
elements
♦ Class
♦ Attribute
♦ Association
♦ Instance

■ This can be modelled with Class Diagrams, e.g.
♦ (a subset of) UML Class Diagrams
♦ Ontology Languages

■ Modelling means to
♦ define classes
♦ create instances of these classes
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Modelling with a General-purpose Modelling Language

Classes
(=metamodel) 

Instances
(= model)

■ Class Diagrams are general-purpose modelling languages; one
can define classes and relations for any domain

■ A model consists of objects which are instances of these classes
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Strengths and Weaknesses of General-Purpose 
Modelling Languages

■ Strengths
♦ Applicability

● Can be used to represent everything
● Every model in the same language
● Low learning curve for the language

■ Weakness
♦ No guidance: Users have to …

● determine how to structure a domain
● to identify relevant concepts

♦ Restrictred reusability
● Different applications use different concepts
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Domain-specific Modelling Languages

■ Modelling languages have modelling elements for typical concepts
and relations of a domain of discourse
♦ Predefined classes, relations and constraints
♦ Specific shapes for modelling elements and relations

■ Modelling means to create instances of theses classes and 
relations

■ Examples of domain-specific modelling languages:
♦ BPMN is a domain-specific language for business processes

● Concepts: task, event, gateway, ….
● Relations: sequence flow, message flow, data association, …

♦ ArchiMate is a domain-specific language for enterprise
architectures
● Concepts: process, actor, role, business object, …
● Relations: uses, realizes, …
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Strengths and Weaknesses of Domain-specfic
Modelling Languages

■ Strengths
♦ Comprehensiblity of models

● concepts and relations are adequate for stakeholders
● domain-specific shapes

♦ Standardisation: Reuse of models
● Common concepts for a domain (e.g. BPMN, ArchiMate)

■ Weaknesses
♦ Restricted to a specific domain

● Only what can be expressed with the modelling elements can
be modeled
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■ If there is no domain-specific modelling language for a domain
of interest, we can
1. Use a general-purpose modelling language
2. Define a new domain-specific modelling language

● From scratch
● By adapting an existing one

 meta modelling

What do we do if there is no Domain-specific
Modelling Language
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Knowledge Work Designer
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Modeling of Knowledge Work

■ Process Logic
♦ Structured Processes (BPM)
♦ Case Models (CMMN)
♦ Combination (BPCMN)

■ Decision Logic
♦ Decision Models (DMN)
♦ Document Model

Details and Download: https://austria.omilab.org/psm/content/kwd/
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Model types of the Knowledge Work Designer

Business Process Modelling
(BPMN)

Process and Case 
Modelling 

(BPCMN)

Case Management 
Modelling 

(CMMN)

Decision
Modelling

(DMN)

Document 
Modelling

Organisation Modelling

Process Logic Business Logic
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Metamodelling with ADOxx
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adoxx.org – Download, Tutorials, Community
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OMiLAB – A Conceptual Modelling Commnity
ADOxx is the basis for OMiLAB
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■ ADOxx consists of …
♦ ADOxx Development Toolkit

● Defining Modelling languages – Library Management
● Administration of users, models, components

♦ ADOxx Modelling Toolkit
● Creating models

The ADOxx Environment
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human interpretable machine interpretable

Graphical Models are Represented in a Database

48

Models

Reality

Knowledge
application

Data Scripts
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notations

model

model
layer

metamodel
layer

meta2-model
layer

classes

Definition of syntax and (type) semantics

Modeling Environment

49

ADOxx Development Toolkit

ADOxx Modeling Toolkit
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■ Start Development Toolkit 

■ Login  
♦ Username: Admin 
♦ Password: password
♦ DB: adoxxdb

(or the one you created
during installation=

Development Toolkit
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Metamodelling with ADOxx
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Meta Modelling Platforms Hierarchyin ADOxx
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Meta2 Model: Meta Model of Meta Modelling Language
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The AMME LifeCycle
Agile Meta Model Engineering
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Development Appraoches in ADOxx –
Configuration and Implementation
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■ The Semantics of a model language is defined by
♦ Classes of elements and relations
♦ Class hierarchy
♦ Attributes of the elements

■ The Syntax is defined by
♦ special attribute GraphRep

Abstract and Concrete Specification
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■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies
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■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies
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Appearance of Classes in the Modelling Toolkit

Classes

Relations classes
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Views of the Class Hierarchy
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Icons in Class Hierarchy
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Attributes

■ Kinds of Attributes
♦ Properties  of Models
♦ Graphical Representation
♦ References
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Defining a new Attribute
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Examples of Attributes
Performer

Task Type
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References
Referencing a Subprocess
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Special Attribute GraphRep
GraphRep: A script language for the graphical representation
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GraphRep Elements

■ Types of elements
♦ Style elements
♦ Shape elements
♦ Variable assigning

elements
♦ Context elements
♦ Control elements

■ Elements are placed on x-y-axes

GraphRep Elements
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GraphRep Examples

Conditional Representation
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AttrRep
The class attribute „AttrRep“ controls the structure of the ADOxx-Notebook.
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Model Types: Represention Views on the Knowledge 
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Classes are assigned to Model Types
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