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Preliminary Note

 These slides guide through the topics of the module
Knowledge Engineering and Business Intelligence

 It is intended as a collection of the main content that you
need to know to pass the exam.

 Instead, it provides a structure of the module in order to
stimulate discussions and questions of the students
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Knowledge-Based Systems
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Knowledge Engineering
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Knowledge Engineering
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Knowledge-Representation and Reasoning

Knowledge
Base

Reality

Reasoning/Inference

machine-interpretable models
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Rule-Based

Knowledge Base Inference
Component

Facts/Classes
Domain knowledge

Rules
Problem solving 

knowledge
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Forward Chaining
Backward Chaining
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Decision Tables and Rule-Based Systems

8

father(peter,mary)
father(peter,john)
mother(mary,mark)
mother(jane,mary)

Facts:

Rules: father(X,Y)    parent(X,Y)
mother(X,Y)   parent(X,Y)
father(X,Y) AND parent(Y,Z)   grandfather(X,Z)
mother(X,Y) AND parent(Y,Z)   grandmother(X,Z)
parent(X,Y) AND parent(X,Z)  sibling(Y,Z)

 Rule 1: 
 IF Temperature = low

THEN heating power is increased

 Rule 2: 
 IF Temperature = normal

AND humidity = low
THEN heating power is normal
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Forward and Backward Chaining

 Backward Chaining
 If you already know what you are looking for

 Forward Chaining
 If you don't necessarily know the final state of your solution

Start states
(facts)

Goal states

KE&BI: Forward & Backward Chaining
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IF Temperature = normal AND humidity = high
THEN heating power is high

Fuzzy Logic – Vague Knowledge 
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Knowledge Graphs - Ontologies

Knowledge Base Inference
Component

Instances
Assertional knowledge

Classes
Terminological

knowledge
Classification
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KnowledgeNets, Triples and Types

triple(a,rdf:type,Person)
triple(a,name,bob).
triple(a,age,33).
triple(a,friend,b).
triple(a,like,c).

triple(b,rdf:type,Person)
triple(b,name,jane).
triple(b,age,26).
triple(b,friend,d).

triple(c,rdf:type,Whiskey)
triple(c,name,lagavulin).
triple(c,age,16).

triple(d,rdf:type,Person)
triple(d,name,tom).
triple(d,age,24).
triple(d,friend,b).
triple(d,owns,f).

triple(f,rdf:type,Car)
triple(f,name,wildcat).
triple(f,brand,porsche).
triple(f,type,911).

13KE&BI: RDF and Knowledge Nets
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Ontology Engineering
Class Hierachy Properties

Instances Queries
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A Two-step Approach for Building a Knowledge 
Base

internal
knowledge

documented
knowledge
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automated
knowledge

knowledge bases
external knowledge

documented
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Models

Reality

Communication/
Analysis/
Decision Making

KnowledgeKnowledge Modeling 

human-interpretable models
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Combine Models and Ontolgies

17

Ontology-based Models
(human- and machine-interpretable )Models +

Knowledge 

Reality

Knowledge
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Ontology-based Metamodeling
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Notation

model

meta2-model
(e.g. RDFS)

meta2-model
(e.g. GraphRep)

model
layer

metamodel
layer

meta2-model
layer

Language ontology
(Abstract Syntax)

Domain ontology
(Semantics)

ontology-based
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Ontology-Based Metamodel

19

• Single environment for modelling and ontology
• Model elements are directly created as instances

in the ontology



Prof. Dr. Knut Hinkelmann

Machine Learning

20
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Machine Learning: 
Learning (Tacit) Knowledge from Data

internal
knowledge external knowledge

tacit
knowledge

self-aware
knowledge

documented
knowledge

automated
knowledge

knowledge bases

E =m c2 
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Machine Learning: General Idea

 Training
 Collect data for the problem
 Use the data to learn how to

solve the type of problem
 Result: Knowledge base

 Application
 Use the learned knowledge for

new problems

training
data

problem

solution

Learning knowledge

Training phase Application phase

Induction Deduction

22
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Learning Decision Trees: Generalisation of Data

Tid Employed Marital 
Status 

Taxable 
Income accept 

1 No Single 125K No 

2 Yes Married 160K Yes 

3 Yes Single 70K No 

4 No Married 120K No 

5 Yes Divorced 95K Yes 

6 Yes Married 60K No 

7 No Divorced 220K No 

8 Yes Single 85K Yes 

9 Yes Married 95K No 

10 Yes Single 90K Yes 
10 

 

Training Data
Model:  Decision Table

Employed

MarSt

TaxInc

YESNO

NO

No Yes

MarriedSingle, Divorced

≤ 80K > 80K
TaxInc

YESNO

≤ 100K > 100K

Learning Decision Trees 23

Model:  Decision Tree


		Tid

		Employed

		Marital


Status

		Taxable


Income

		accept



		1

		No

		Single

		125K

		No



		2

		Yes

		Married

		160K

		Yes



		3

		Yes

		Single

		70K

		No



		4

		No

		Married

		120K

		No



		5

		Yes

		Divorced

		95K

		Yes



		6

		Yes

		Married

		60K

		No



		7

		No

		Divorced

		220K

		No



		8

		Yes

		Single

		85K

		Yes



		9

		Yes

		Married

		95K

		No



		10

		Yes

		Single

		90K

		Yes
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Neural Networks

Neural 
Networks24
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Two ways of Learning from Experience

 There are two ways of learning from data
 Machine Learning: 

 Learn a set of rules from data
 Apply this model for any new

case
 Case-Based Reasoning (CBR): 

 For a new situation find the most
similar data set and take the
conclusion

 If no appropriate data set is
found, solve the new case ad 
hoc and store it

25
Case-
Based 

Reasoning
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CBR Cycle
Retrieve …

most similar case or cases

Reuse …
the information and knowledge in 
that case to solve the problem

Revise …
the proposed solution if necessary

Retain …
the parts of this experience likely to
be useful for future problem solving

26

Source: K.-D. Althoff & A. Aamodt: Relating case-based problem solving and learning methods to task and 
domain characteristics. AI Communications 1996
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Case-
Based 

Reasoning
27

Similarity Calculation for Attribute-Value Pairs

query Q:
♦ A1:  y1
♦ A2:  y2
♦ …
♦ An:  yn

case A:
 A1:  x1
 A2:  x2
 …
 An:  xn

solution/information:
 ...

simA1
simA2

simAn

Cases resp. meta-data are represented by n attributes A1 ,...,An
♦ each attribute Ai has type Ti

Local similarity: for each attribute a similarity function is defined
♦ simAi (xi ,yi ): Ti x Ti → [0..1]
♦ local similarity measures depend on the type of the attribute

Global similarity: combining values for local similarity
♦ sim(A,Q) = F(simA1(x1,y1), simA2(x1,y1), …, simAn(xn,yn))
♦ F:[0..1]n → [0..1] is called an aggregation function



Prof. Dr. Knut Hinkelmann

Business Intelligence

28
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BI overview

Data Warehouse

DB1

ETLETL

Questions

Analyses

• What are our goals?
• Are we reaching our goals?
• If not, where is the problem?

• Which credit applications should
be accepted?

• Who are potential csutomers for
the new product?

measure,
aggregate,
visualise

Ad hoc
queries,
OLAP

find 
patterns
(data
mining)dimensional

modelling

DB2

strategic operative

raw data

IE

/ © Dr. H. F. Witschel
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Data Sources Analysis and Use

Query & 
Reporting

OLAP

Data 
Mining

External Data

Operational
data

Data 
Warehouse

Data Management

Data mart

ETL Data mart

Data mart

Business Intelligence
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ETL process

 The process of
 extracting relevant data from

source systems
 transforming the data into the

target format defined for the DWH 
or data mart

 loading the data into the DWH

31/ © Dr. H. F. Witschel
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Business Performance Management
Strategy/Goals:
Where do we want to go?

Objectives:
How can we achieve the strategy?

Measurement:
Did we reach our objectives - KPIs?

Finance

Innovation

ProcessesCustomers

Quelle: (Niven 2003)



Prof. Dr. Knut Hinkelmann

KPI Visualisation

 (usually) needs to highlight
 the target value
 the actual value
 the ranges of «red (poor), yellow (satisfactory), green (good)», 

if defined

33

thermometer dial chart
bullet graph
(for color-blind!)

/ © Dr. H. F. Witschel
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Star Schema for Relational Data Warehouses /Marts
to support OLAP

34

Star Schema:

logical database schema, 
which places dimension
tables of a relational 
database aroung a fact
table for easy querying

Maping of multidimensional 
data to two-dimensional 
tables. 
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Dicing and Slicing

35

 An   OLAP cube can be regarded as a 
multidimensional cube

 From a cube only two dimensions are visible
on a two-dimensional interfact (e.g. as a table)

 Slicing
 Contraining one dimension

 Dicing
 Constraining several dimensions

 Pivoting
 "turning" the cube to show other

dimension

 Roll-up/Drill-down – Split/Merge

■ Aggregate or detailing views
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OLAP Operation – Slicing and Dicing

Biking

Running

Football

Golf

Outdoor

Northern
Europe

Middle
Europe

South
Europe

Biking
Running
Football

Golf
Outdoor

Northern
Europe

Middle
Europe

South
Europe

Running

Football
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Europe

Middle
Europe

South
Europe
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