
Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Conceptual Modelling

Knut Hinkelmann

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Knowledge Graphs Conceptual (graphcial)
Models

Modeling using predefined concepts

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Enterprise Models

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

General-purpose Modelling Languages vs.
Domain-specific Modelling Languages

■ General-purpose modelling languages can be used to represent
any kind of knowledge
♦ Examples: Class diagrams, Knowledge graphs (RDFS)
♦ Concepts: Classes, Properties

■ Domain-specific languages have predefined concepts (modeling
elements and relationships) that are specific for a domain
♦ Examples of domain-specific modelling languages:

● BPMN for business processes
– Elements: task, event, gateway, ….
– Relationships: sequence flow, message flow, association, …

● ArchiMate for enterprise architectures
– Elements: process, actor, role, business object, …
– Relationships: uses, realizes, …

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Strengths and Weaknesses of Domain-specfic
Modelling Languages

■ Strengths
♦ Comprehensibility of models

● Concepts are adequate for stakeholders
♦ Guidance for modelers

● Predefined concepts determine what is relevant for a model
● Modeling language determines correct usage of elements

♦ Standardisation: Reuse of models
● Common concepts for a domain (e.g. BPMN, ArchiMate)

■ Weaknesses
♦ Restricted to a specific domain

● Only what can be expressed with the modelling elements can be
modeled

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Conceptual Modeling and
Metamodelling

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Models, Modelling, Modeling Language

Modelling Language
Notation/Visualization of the concepts that can be used
for modeling

Model
A reproduction of the part of reality which contains the
essential aspects to be investigated.

Conceptual Modelling
Creating models using predefinded concepts.

Meta Model
The concepts of the modeling language are predefined
in a so-called meta model

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-model
■ A meta-model defines ...

…Concepts that can be used to
create a model

…Attributes of concepts
…Rules to combine concepts

■ The meta-model represents the
general knowledge about the
domain

Meta model

model of

Model

Reality

model of

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Concepts for Business Process Models

Metamodel:
Concepts which can be
used to create models.

Example: A process
model consists of
concepts for
• Model elements:

event, task,
subprocess, gateway,
data object

• Relationships:
sequence flow,
data association.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Modelling Language
■ A modelling language specifies the

notation for the concepts, from which a
model can be made.

■ There are different kinds of notations
♦ For graphical models the notation

consists of visualization of the
concepts

♦ Textual models consist of words
♦ Mathematical models use symbols
♦ physical model are composed of

physical elements

direct
model of

Meta model

model of

Modelling
Language

created with
Model

Reality

model of

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Illustration: Modeling Language for Business Processes

Meta model:
Concepts which can be
used to create models.

Example: A process
model consists of
concepts for
• Model elements:

event, task,
subprocess, gateway,
data object

• Relationships:
sequence flow,
data association.

Modelling
Language:
Notation/appearance of
meta-model concept

task

event

gateway

data object

sequence flow
data association

subprocess

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Illustration: Modeling Language for Business Processes

Model:

A model contains instances of the
concepts defined in the meta-model.
The object „confirm order“
represents a real entity; it is an
instance of the concept «task"

Metamodel:

Modelling
Language:
Notation/appearance of
meta-model concept

task

event

gateway

data object

sequence flow
data association

subprocess

Concepts which can be
used to create models.

Example: A process
model consists of
concepts for
• Model elements:

event, task,
subprocess, gateway,
data object

• Relationships:
sequence flow,
data association.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ModelModelling
Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ModelModelling
Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-meta model
■ The meta model must again be described

in some language, which is specified in a
meta-meta model

■ A meta-meta model defines the concepts
for describing a meta model

■ Graphical models usually have to kinds of
concepts
♦ Modeling elements
♦ Relationships

■ Examples for meta-modeling languages
are
♦ class diagrams.
♦ Knowledge graphs

■ Note: Meta-modeling languages are
general-purpose modeling languages

direct
model of

Meta model

model of

Modelling
Language

created with
Model

Reality

model of

model of

Meta-meta
model

Meta-Modelling
Language

created with

direct
model of

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodels can be defined as Class Diagrams

Model:

A model contains instances of the
concepts defined in the meta-model.
The object „confirm order“
represents a real entity; it is an
instance of the concept «task"

Metamodel:

Modelling
Language:
Notation/appearance of
meta-model concept

task

event

gateway

data object

sequence flow
data association

subprocess

Concepts which can be
used to create models.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodels can be defined as Class Diagrams

(UML Class diagrams where originally designed for modelling in object-oriented programming. This
is why they contain operations and other features, which are not relevant for most modelling
languages)

A Metamodeling language one can describe meta models
Metamodel corresponds to a knowledge base
Metamodels can be represented as class diagrams

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Subset of the BPMN Metamodel as UML Class Diagram

Source: BPMN 2.0 specification

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Knowledge in Models

19

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Models are not mere pictures; rather, they
♦ provide a precise, meaningful description that can be

visualized in different ways for different stakeholders;
♦ can also be used to analyze the impact of changes, cost,

risk, security, compliance and other relevant KPIs.

20

Models

http://blog.bizzdesign.com/how-to-not-fail-when-implementing-strategy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Interpretation of Models

21

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Making the Knowledge in Models explicit

■ Humans «know» the meaning of the modeling objects.
♦ Meta model: Concepts of the model language
♦ Application: Labels/names of the model elements

■ Examples:
♦ Meta model: Application Component
♦ Application: «ERP System» is business software

♦ Meta model: Task
♦ Application: «Cook pasta» is about preparing food

■ The objective is to represent the knowledge so that it can be
interpreted by a system for decision making and problem solving

22

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Dimensions of a Knowledge Space

23

Karagiannis, D., & Woitsch, R. (2010). Knowledge Engineering in Business Process Management.
In Handbook on Business Process Management 2 (pp. 463–485). Springer.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Dimensions of the Knowledge Space

■ Use: Stakeholders and their
concerns determine the relevant
subset of the knowledge

■ Form: Syntax and semantic of
meta model concepts.

■ Content: Instantiation of meta
model concepts for a specific
application (represented in the
labels)

■ Interpretation: Giving meaning to
a model:
♦ Graphical models are cognitively

adequate for human
♦ Machines need more formal

representation
24

Form: modeling language

Content: Instantiation of concepts

Use:
• process optimization requires knowledge

about time and costs
• selection of a cloud service require

knowledge about data and functionality

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Communication/
Analysis/
Decision Making

Knowledge

Graphical Models are appropriate for Humans

human-interpretable models

25

Models

Reality

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch 26

Models should allow automated analysis,
decision making and digitalization

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Models

Reality

human interpretable machine processable

Graphical Models are Represented in a Database

27

Knowledge
application

Data Scripts

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodelling with ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

adoxx.org – Download, Tutorials, Community

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

OMiLAB – A Conceptual Modelling Commnity
ADOxx is the basis for OMiLAB

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx consists of …
♦ ADOxx Development Toolkit

● Defining Modelling languages – Library Management
● Administration of users, models, components

♦ ADOxx Modelling Toolkit
● Creating models

The ADOxx Environment

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

notations

model

model
layer

metamodel
layer

meta2-model
layer

classes

Definition of syntax and (type) semantics

Modeling Environment

32

ADOxx Development Toolkit

ADOxx Modeling Toolkit

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-
modeling

Modeling

Metamodel

Notation Design

is-
aMetamodel

Engineer

Modeling and Metamodeling

33

Modeler

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

The AMME LifeCycle
Agile Modeling Method Engineering

(Karagiannis 2015)
34

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Example: Create a Modeling Language for Teaching

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ Start Development Toolkit

■ Login
♦ Username: Admin
♦ Password: password
♦ DB: adoxxdb

(or the one you created
during installation)

Development Toolkit

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Metamodelling with ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Import Modeling Language Libraries

You can download
conceptual modeling
libraries from
adoxx.org, e.g. BPMN,

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Create a new Modeling Language Library

To create a new
library, import the
empty library
«adostd.abl» from
your installation
folder and rename it.
Also rename the
dynamic and static
sublibraries

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta Modelling Platforms Hierarchyin ADOxx

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta2 Model: Meta Model of Meta Modelling Language

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Development Approaches in ADOxx –
Configuration and Implementation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ The Semantics of a model language is defined by
♦ Classes of elements and relations
♦ Class hierarchy
♦ Attributes of the elements

■ The Syntax is defined by
♦ special attribute GraphRep

Abstract and Concrete Specification

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

■ ADOxx distinguishes
♦ Classes
♦ Relation classes

Class Hierarchies

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Appearance of Classes in the Modelling Toolkit

Classes

Relations classes

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Views of the Class Hierarchy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Icons in Class Hierarchy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Creating new Classes

There are
predefined abstract
classes which have
specific functionaliy

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

New Classes for Lecturer and Module

New classes, e.g. «Lecturer»
and «Module» can be defined
as subclasses of D-construct,
if no specific functionality is
needed.
They inherit the attributes of
the superclass

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Definining a new Relation

Example: A new relation
«teaches» for elements
from class «Lecturer» to
class «Module»

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Attributes

■ Kinds of Attributes
♦ Properties of Models
♦ Graphical Representation
♦ References

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Special Attribute GraphRep
GraphRep: A script language for the graphical representation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Defining a GraphRep
With the help
button you can
define and test the
graphics

TEXT shows a
standard text,
ATTR shows the
names of the
corresponding
attribute

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

ADOxx GraphRep Repository

Examples of
GraphReps can be
found in the ADOxx
Developer
Community

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

GraphRep Elements

■ Types of elements
♦ Style elements
♦ Shape elements
♦ Variable assigning

elements
♦ Context elements
♦ Control elements

■ Elements are placed on x-y-axes

GraphRep Elements

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

GraphRep Examples

Conditional Representation

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Defining a new Attribute

1. Select Class
2. Right Click or select «New

Attribute …»
3. Define Attribute

Example: Create an
Enumeration Attribute to select
type of modules as Lecture or
Project

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

References
Referencing a Subprocess

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Appearance of Classes in the Modelling Toolkit

Classes

Relations classes

Attributes

63

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

AttrRep
The class attribute „AttrRep“ controls the structure of the ADOxx-Notebook.

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Model Types: Represention Views on the Knowledge

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Example

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Classes are assigned to Model Types

Prof. Dr. Knut Hinkelmann
knut.hinkelmann@fhnw.ch

Meta-
modeling

Models Modeling

Cloud Task

Metamodel

Notation Designis-aMetamodel
Engineer

Change of Metamodel

Feedback
Amendments
Improvements

68

■ Example: new task type Cloud Task

Modeler

	Conceptual Modelling
	Foliennummer 2
	Enterprise Models
	General-purpose Modelling Languages vs. �Domain-specific Modelling Languages
	Strengths and Weaknesses of Domain-specfic Modelling Languages
	Conceptual Modeling and Metamodelling
	Models, Modelling, Modeling Language
	Meta-model
	Concepts for Business Process Models
	Modelling Language
	Illustration: Modeling Language for Business Processes
	Illustration: Modeling Language for Business Processes
	Foliennummer 13
	Foliennummer 14
	Meta-meta model
	Metamodels can be defined as Class Diagrams
	Metamodels can be defined as Class Diagrams
	Subset of the BPMN Metamodel as UML Class Diagram
	Knowledge in Models
	Models
	Interpretation of Models
	Making the Knowledge in Models explicit
	Dimensions of a Knowledge Space
	Dimensions of the Knowledge Space
	Graphical Models are appropriate for Humans
	Foliennummer 26
	Graphical Models are Represented in a Database
	Metamodelling with ADOxx
	adoxx.org – Download, Tutorials, Community
	OMiLAB – A Conceptual Modelling Commnity
	The ADOxx Environment
	Modeling Environment
	Modeling and Metamodeling
	The AMME LifeCycle�Agile Modeling Method Engineering
	Example: Create a Modeling Language for Teaching
	Development Toolkit
	Foliennummer 37
	Metamodelling with ADOxx
	Import Modeling Language Libraries
	Create a new Modeling Language Library
	Foliennummer 41
	Foliennummer 42
	Meta Modelling Platforms Hierarchyin ADOxx
	Meta2 Model: Meta Model of Meta Modelling Language
	Development Approaches in ADOxx – �Configuration and Implementation
	Abstract and Concrete Specification
	Class Hierarchies
	Class Hierarchies
	Appearance of Classes in the Modelling Toolkit
	Views of the Class Hierarchy
	Icons in Class Hierarchy
	Creating new Classes
	New Classes for Lecturer and Module
	Definining a new Relation
	Attributes
	Special Attribute GraphRep
	Defining a GraphRep
	ADOxx GraphRep Repository
	GraphRep Elements
	GraphRep Examples
	Defining a new Attribute
	References
	Appearance of Classes in the Modelling Toolkit
	AttrRep
	Model Types: Represention Views on the Knowledge
	Example
	Classes are assigned to Model Types
	Change of Metamodel

