
AN INTRODUCTION 
TO MINIZINC



MINIZINC
MiniZinc is a language designed for specifying constrained 
optimization and decision problems over integers and real 
numbers
A MiniZinc model does not dictate how to solve the problem 
although the model can contain annotations which are used to 
guide the underlying solver
MiniZinc is designed to interface easily to different backend 
solvers

• An input MiniZinc model and data file is transformed into
a FlatZinc model 

• FlatZinc models consist of variable declaration and constraint 
definitions as well as a definition of the objective function if the 
problem is an optimization problem 

• The translation from MiniZinc to FlatZinc is specializable to 
individual backend solvers 



INTRODUCTORY DEMO



A FIRST EXAMPLE
We wish to colour a map of Australia 
Seven different states and territories each of which must be given 
a colour so that adjacent regions have different colours

In graph theory, graph coloring is a special case of graph labeling; 
it is an assignment of labels traditionally called “colours” to 
elements of a graph subject to certain constraints
Edge coloring assigns a color to each edge so that no two 
adjacent edges share the same color



CODE



COMMENTS
A comment starts with a ‘%’ which indicates that the rest of the 
line is a comment. 

Example: 
% Coloring Australial using nc colors

MiniZinc has also begin/end comment symbols: /* and */



VARIABLE DECLARATIONS
int: nc = 3;  declares a variable of the model 

• the number of colours to be used 
• a parameter in the problem
• They must be declared and given a type. In this case the type is int
• They are given a value by an assignment, as part of the declaration 

(as above), or a separate assignment statement 
int: nc; 
nc = 3; 

• It is an error for a parameter to occur in more than one assignment
(like a constant variable in most programming languages)

The basic parameter types are integers (int), floating point 
numbers (float), booleans (bool) and strings (string)

Arrays and sets are also supported



DECISION AND PARAMETERS
MiniZinc distinguishes between the two kinds of model variables: 
parameters and decision variables

• Expressions that can be constructed using decision variables are 
more restricted than those that can be built from parameters. 

• In any place that a decision variable can be used, so can a 
parameter of the same type

The distinction between parameters and decision variables 
concerns the instantiation of the variable

• The former is instantiated by you (the modeller)
• The second is instantiated by the solver



BACK TO THE EXAMPLE
In our colouring model we associate a decision variable with each 
region, wa, nt, sa, q, nsw, v and t, which stands for the (unknown) 
colour to be used to fill the region
For each decision variable we need to give the set of possible 
values the variable can take. This is called the variable’s domain

• It can be given as part of the variable declaration 
• The type of the decision variable is inferred from the type of the 

values in the domain
In MiniZinc decision variables can be booleans, integers, floating 
point numbers,  sets, or arrays whose elements are decision 
variables 
In the example we use integers to model the different colours. 

• 1..nc which is an integer range expression indicating the 
set {1, 2, ..., nc} 



CONSTRAINTS
The next component of the model are the constraints 
These specify the boolean expressions that the decision variables 
must satisfy to be a valid solution to the model
In our running example we have a number of not equal constraints 
between the decision variables enforcing that if two states are 
adjacent then they must have different colours

constraint wa != nt; 
constraint wa != sa;
constraint nt != sa; 
constraint nt != q; 
constraint sa != q; 
constraint sa != nsw; 
constraint sa != v;
constraint q != nsw; 
constraint nsw != v; 

MiniZinc provides: equal (= or ==), not equal (!=), strictly less than (<) strictly greater
than (>), less than or equal to (<=), and greater than or equal to (>=). 



SOLVE AND OUTPUT
solve satisfy; indicates the kind of problem
In this case it is a satisfaction problem: we wish to find a value for 
the decision variables that satisfies the constraints but we do not 
care which one 
The final part of the model is the output statement

• An output statement is followed by a list of strings 
• String literals which are written between double quotes and use a C 

like notation for special characters 
• expression of the form show(X) where X is the name of a decision 

variable or parameter 
There are also formatted varieties of show for numbers 

• show_float(n,d,X) outputs the value of float X in at least |n| 
characters, right justified if n > 0 and left justified otherwise, with d 
characters after the decimal point 

output ["wa=", show(wa), "\t nt=", show(nt), "\t sa=", show(sa), "\n", "q=", 
show(q), "\t nsw=", show(nsw), "\t v=", show(v), "\n",  "t=", show(t), "\n"];



RUN IT!
Evaluate our model with RUN button 
or the command: $ minizinc --solver gecode aust.mzn 

• aust.mzn is the name of the file which contains the whole 
model

• gecode is one of the solvers in the suite
• The output is: 

wa=1 
nt=3 
sa=2 
q=1 
nsw=3 
v=1 
t=1 
----------

1

1

3

1

1

2

3

The line of 10 dashes ---------- is automatically added by the MiniZinc in the output 
to indicate a solution has been found 



SOME MORE INFORMATION
MiniZinc is a high-level, typed, mostly first-order, functional, 
modelling language. It provides: 

• mathematical notation-like syntax (automatic coercions, 
overloading, iteration, sets, arrays);

• expressive constraints (finite domain, set, linear arithmetic, integer);
• support for different kinds of problems (satisfaction, explicit 

optimisation);
• separation of data from model; 
• extensibility (user-defined functions and predicates);
• reliability (type checking, instantiation checking, assertions); 
• solver-independent modelling;
• simple, declarative semantics. 



FROM ZINC TO FLATZINC

FlatZinc is a low-level solver input language that is the target language 
for MiniZinc. It is designed to be easy to translate into the form required 
by a solver.

Zinc MiniZinc FlatZinc Solver



YOU MODEL WE SOLVE
FlatZinc Implementations
Gecode/FlatZinc. The Gecode generic constraint development 
environment provides a FlatZinc interface. The source code for the 
interface stripped of all Gecode-specific code is also available.
ECLiPSe. The ECLiPSe Constraint Programming System provides support 
for evaluating FlatZinc using ECLiPSe's constraint solvers. MiniZinc
models can be embedded into ECLiPSe code in order to add user-defined 
search and I/O facilities to the models.
SICStus Prolog. SICStus (from version 4.0.5) includes a library for 
evaluating FlatZinc.
JaCoP. The JaCoP constraint solver (from version 4.2) has an interface to 
FlatZinc.
SCIP. SCIP, a framework for Constraint Integer Programming, has an 
interface to FlatZinc.
Opturion CPX. Opturion CPX, a Constraint Programming solver with 
eXplanation system, has an interface to FlatZinc.
MinisatID. MinisatID, an implementation of a search algorithm combining 
techniques from the fields of SAT, SAT Module Theories, Constraint 
Programming and Answer Set Programming, has an interface to FlatZinc.



RESOURCES
MiniZinc 2.0

• Windows, MacOS, Linux, Installation from source code.
• http://www.minizinc.org/2.0/index.html

The MiniZinc IDE is a tool for writing and running MiniZinc models
• Windows, MacOS, Linux, source code.
• http://www.minizinc.org/ide/index.html

MiniZinc 2.0 Specification
• http://www.minizinc.org/2.0/doc-lib/minizinc-spec.pdf

Tutorial
• http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf

Global constraints and built-in functions
• http://www.minizinc.org/2.0/doc-lib/doc.html

http://www.minizinc.org/2.0/index.html
http://www.minizinc.org/ide/index.html
http://www.minizinc.org/2.0/doc-lib/minizinc-spec.pdf
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
http://www.minizinc.org/2.0/doc-lib/doc.html




ANOTHER EXAMPLE: BAKING!
We know how to make two sorts of cakes for a fete at Unicam.

A banana cake which takes 250g of self-raising flour, 2 mashed 
bananas, 75g sugar and 100g of butter, 

and 

a chocolate cake which takes 200g of self-raising flour, 75g of 
cocoa, 150g sugar and 150g of butter. 

We can sell a chocolate cake for $4.50 and a banana cake for 
$4.00. 

And we have 4kg self-raising flour, 6 bananas, 2kg of sugar, 500g 
of butter and 500g of cocoa. 

How many of each sort of cake should we bake for the fete to 
maximise the profit?



BAKING CAKES



INTEGER ARITHMETIC EXPR.
MiniZinc provides the standard integer arithmetic operators. 

• Addition (+),
• subtraction (-), 
• multiplication (*),
• integer division (div),
• integer modulus (mod),

MiniZin provides Integer functions as 
• absolute value (abs(-4) = 4),
• power function (pow(2,5) = 32)

Integer literals can be decimal, hexadecimal or octal.
• For instance 0, 005, 123, 0x1b7, 0o777 



OPTIMISATION
solve maximize 400 * b + 450 * c; 

• We want to find a solution that maximises the expression in the 
solve statement called the objective

• The objective can be any kind of arithmetic expression
• One can replace the key word maximize by minimize to specify a 

minimisation problem

The line ========== is output automatically for optimisation 
problems when the system has proved that a solution is optimal 

no. of banana cakes = 2 
no. of chocolate cakes = 2 
----------
========== 



DATAFILES
A drawback of this model is that, each time we need to modify the 
amount of ingredients we have, we need to modify the constraints

Solution: set the value of these parameters in a separate data file, with 
extension .dzn (pantry.dzn)

no. of banana cakes = 3 
no. of chocolate cakes = 8



ASSERTIONS
Defensive programming suggests that we should check that the 
values in the data file are reasonable
In case of our example, to check that the quantity of all 
ingredients is non-negative and generate a run-time error if this is 
not true
MiniZinc provides a built-in boolean operator 

• The form is assert(b,s) 
• constraint assert(flour >= 0.0,"Amount of flour is negative"); 



REAL NUMBER SOLVING
MiniZinc also supports “real number” constraint solving using 
floating point solving 

Note that we declare a float variable f using var float: f 

• f in a fixed range l to u with var l..u: f, where l and u are floating point 
expressions 

Addition (+), subtraction (-), multiplication (*) and floating point 
division (/). 

The built-in function int2float can be used to coerce integers to 
floating point numbers

Floating point functions for 

• absolute value (abs), square root (sqrt), natural logarithm (ln), 
logarithm base 2 (log2), logarithm base 10 (log10), exponentiation of e 
(exp), sine (sin), cosine (cos), tangent (tan), arcsine (asin), arccosine 
(acos), arctangent (atan), and unary power (pow). 

The syntax for arithmetic literals is standard. Example float literals are 
1.05, 1.3e-5 and 1.3+E5



DIFFERENT SOLVERS
Since we wish to use real number solving we need to use a different 
solver than the finite domain solver  gecode

A suitable solver would be one that supports mixed integer linear 
programming (org.minizinc.mip.osicbc)

DEMO:
• Show loan.mzn and loan1.dzn
• Question1: if I borrow $1000 at 4% and repay $260 per quarter, 

how much do I end up owing?
• $ minizinc --solver org.minizinc.mip.osicbc loan.mzn loan1.dzn

• Question 2: if I want to borrow $1000 at 4% and owe nothing at
the end, how much do I need to repay?

• $ minizinc --solver org.minizinc.mip.osicbc loan.mzn loan2.dzn
• Question 3: if I can repay $250 a quarter, how much can I borrow

at 4% to end up owing nothing?
• $ minizinc --solver org.minizinc.mip.osicbc loan.mzn loan3.dzn



ARRAYS 
Almost always we are interested in building models where the 
number of constraints and variables is dependent on the input data. 
In order to do so we will usually use arrays
How to declare a finite number of elements in a 2-dim matrix 

• array[0..w,0..h] of var float: t;
The index set of an array needs to be a fixed integer range 
(contiguous), or a fixed set expression whose value is an integer 
range (contiguous)
The built-in function length returns the number of elements in a 1-D 
array 
1-D arrays are initialized using a list 

• capacity = [4000, 6, 2000, 500, 500]; 
2-D array (a matrix) initialization uses a list with ``|’’ separating rows 

• array[products, resources] of int: consumption;
consumption = [| 250, 2, 75, 100, 0, 

| 200, 0, 150, 150, 75 |]; 



ARRAYS: DEMO

Show code of the Laplace model of the steady state temperature of a 
sheet of metal. 



ENUMERATED TYPES: DEMO
Show code of the production planning.

This is a generalization of the baking problem with any kinds of 
resources and products.

This example makes use of built-in functions that take a one-
dimensional array and aggregate the elements.

forall takes an array of boolean expressions and returns their logical 
conjunction 

forall( [a[i] != a[j] | i,j in 1..3 where i < j]) constrains the elements in a 
to be different. The list comprehension evaluates to [ a[1] != a[2], a[1] != 
a[3], a[2] != a[3] ] and so the forall function returns the logical 
conjunction a[1] != a[2] ∧ a[1] != a[3] ∧ a[2] != a[3]

It can be written as forall (i,j in 1..3 where i < j) (a[i] != a[j])


