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Abstract: Machine Learning is considered as a subfield of Artificial Intel-
ligence and it is concerned with the development of techniques and methods
which enable the computer to learn. In classification problems generalization
control is obtained by maximizing the margin, which corresponds to minimiza-
tion of the weight vector. The minimization of the weight vector can be used
in regression problems, with a loss function. The problem of classification for
linearly separable data and introduces the concept of margin and the essence
of SVM - margin maximization. In this paper gives the soft margin SVM in-
troduces the idea of slack variables and the trade-off between maximizing the
margin and minimizing the number of misclassified variables. A presentation
of linear SVM followed by its extension to nonlinear SVM and SVM regression
is then provided to give the basic mathematical details. SRM minimizes an
upper bound on the expected risk, where as ERM minimizes the error on the
training data. It also develops the concept of SVM technique can be used for
regression. SVR attempts to minimize the generalization error bound so as to
achieve generalized performance instead of minimizing the observed training
error.
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1. Introduction

Support Vector Machine (SVM) was first heard in 1992, introduced by Boser,
Guyon, and Vapnik in COLT-92. Support vector machines (SVMs) are a set of
related supervised learning methods used for classification and regression. They
belong to a family of generalized linear classifiers. SVM is a useful technique for
data classification. Classification in SVM is an example of Supervised Learn-
ing. A step in SVM classification involves identification as which are intimately
connected to the known classes. This is called feature selection or feature ex-
traction [1] [3]. Support Vector Machine (SVM) is a classification and regression
prediction tool that uses machine learning theory to maximize predictive accu-
racy while automatically avoiding over-fit to the data. In the same manner as
the non-linear SVC approach, a non-linear mapping can be used to map the
data into a high dimensional feature space where linear regression is performed.
The foundations of Support Vector Machines (SVM) have been developed by
Vapnik and gained popularity due to many promising features such as better
empirical performance. The formulation uses the Structural Risk Minimization
(SRM) principle, which has been shown to be superior, to traditional Empirical
Risk Minimization (ERM) principle, used by conventional neural networks.

2. Basic Machine Learning

Given a collection of data, a machine learner explains the underlying process
that generated the data in a general and simple fashion.

Different learning paradigms:

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

2.1. Supervised Learning
Supervised Learning: Classification. Each element in the sample is labeled

as belonging to some class (e.g., apple or orange). The learner builds a model
to predict classes for all input data. There is no order among classes [6], [5].
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Supervised Learning: Regression. Each element in the sample is as-
sociated with one or more continuous variables. The learner builds a model
to predict the value(s) for all input data. Unlike classes, values have an order
among them [2], [4].

3. SVM Mathematically

Consider the problem of separating the set of training vectors belonging to the
separate classes,

D={(z"y"), (a*,9%),.... (2",y"),w € R",y € {~1,+1}

with the hyperplane

(w,z) +b=0

The set of vectors is said to be optimally separated by the hyper plane
min |(w, z%) + b| = 1

Where the parameters w, b

Figure 1: Hyper planes

The norm of the weight vector should be equal to the inverse of the distance,
of the nearest point in the data set to the hyper plane [10], [7].

y'l(w,z)+b]>1 i=1,2,....n (1)
The distance at a point x from the hyperplane

L lw,a) +b

[[wl]



744 M. Premalatha, C. Vijaya Lakshmi

The optimal hyper plane is given by maximizing the margin, p, subject to the
constraints of Equation (1)
The margin is given by,

p(w,b) = min d(wabvxl)—i_ min d(wvbaxz)

aiyi=—1 ol yi=1
H+b D+ b
siy=—1  |[w]| siy=1  [[w]|

1 ‘ .
:—( min |(w,2") + b+ min |<w,:cl>+b|)
=—1 ztyt=1

3.1. Support Vector Machine

Fix the empirical risk and minimize the VC confidence. SVM learns the best
separating hyper plane. We should maximize the margin,
2

P00 =
Three main ideas: Define what an optimal hyper plane: maximize margin.
Non-linearly separable problems: have a penalty term for misclassifications [9].
Map data to high dimensional space where it is easier to classify with linear
decision surfaces: reformulate problem so that data is mapped implicitly to this
space

Figure 2: Support Vector Setting up to the Optimization Problem

The width of the margin is: p(w,b) = %
2|k|

So, the problem is max max Tl
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Subject to the Constraint

(wx+b) >k, Vaofclass 1

(w.x +b) < —k, Vxof class 2

There is a scale and unit for data so that £ = 1. Then problem becomes:
So, the problem is max II%H

Subject to the Constraint

(wax+b)>1, Vxof class 1

(wx+b) < —1, Vx of class 2

If class 1 corresponding to 1 and class 2 corresponds to -1
(wa®+b) >1, Vo withy =1

(wal +b) < —1, V2 with y* = —1

y(w,2t) +b] >1i=1,2,...,n

Yy (w, ) +b]—-1>0i=1,2,...,n

So the problem becomes

Objective function of the maximization and minimization

maxﬁ min%HwH2

Subject to the constrain Subject to the constraint
Yy (w.a® +b) > 1V 2 Yy (w.a® +b) > 1V at
with ' = +1 with y* = +1

Now SVM formulation
min 3 [u
Subject to the constraint
Yy (w.a® +b) > 1V 2t
So, there is a unique global minimum value (when feasible). There is also a
unique minimizer, i.e. weight and b value that provides the minimum. Non-
solvable if the data is not linearly separable. Quadratic Programming Very
efficient computationally with modern constraint optimization engines (han-
dles thousands of constraints and training instances) [7]. There are theoretical
upper bounds on the error on unseen data for SVM
The larger the margin, the smaller the bound
The smaller the number of SV, the smaller the bound

3.2. Introduction of Slack Variables C Tradeoff
Objective function penalizes for misclassified instances and those within the

margin
min gljw|? + C32; &
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Vo, &

Figure 3: (a) C tradeoff margin width, (b) Hard margin SVM

C trades-off margin width and misclassifications.
Define &; = 0 if there is no error for x;

& Are just “slack variables”

Subject to the constraint

Y (wat+b)>1-& Valyl=1

Y (wa' +b) < —1+&Valyl =1

&>0 Val

Subject to the constraint

Y (wat+b)>1—& Vot

§& >0

Algorithm tries to maintain &; to zero while maximizing margin, algorithm
does not minimize the number of mis classifications, but the sum of distances
from the margin hyper planes. Other formulations use £? instead. As C' — oo,
we get closer to the hard-margin solution. Soft-Margin always has a solution.
Hard-Margin does not require guessing the cost parameter.

In the limit, C' — oo the solution converges toward the solution obtained
by the optimal separating hyper plane In the limit, C' — 0, the solution con-
verges to one where the margin maximisation term dominates, there is now less
emphasis on minimizing the misclassification error, but purely on maximising
the margin, producing a large width margin. Consequently as C' decreases the
width of the margin increases. The useful range of C' lies between the point
where all the Lagrange Multipliers are equal to C' and when only one of them
is just bounded by C [8].
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4. Support Vector Regression — Linear Regression
Consider the problem of approximating the set of data,

D ={(z"y"), (z*,9").....(z",y"), s €R"yER

with a linear function 4)
(w,z) +b=0
flz)=wax+Db (5)

Regression function is given by the minimum of the function.
1 n
o(w,§) = Sllwll* +C D (& +&) (6)
i=1

Where C' is pre-specified value and &, + §i+ is slack representing upper and
lower constraints on the outputs of the system.

Table 1: Classification Data’s

Linear separable | Non-Linear Separable
Classification Data | Classification Data
X1 | X2 Y X1 | X2 y

1 1 -1 1 1 -1

3 3 3 3 1

1 3 1 3 1

3 1 -1 3 1 -1

2 3 1 2 |25 1

3 125 -1 3 125 -1

4 3 -1 4 3 -1

4 13.5 1 1.5 1.5 1

2 1 -1 1 2 -1

1.5 2.5 -1

4.1. Regression Loss Function

Le(y) = {0 for [f(a) — y| < el f(x) — y| — & otherwise (7)
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The solution is given by

n

Ea_:argmm E E (@4, x5) g
Ola 2

=1 j=1 =1

+) (i +a)e (8)
=1

With constraints
(i +a)<C; (ai+a))>0 9)

n
E «; —l—a
i=1

Solving equation (8), (9) determines the Lagrange multipliers (o; 4 ¢f) and
the regression function is given by the equation (4) where

W= Z(ai —al)x (10)

i=1
. 1
b* = —5( (21 + )
Using a quadratic loss function
Lguad(f(z) —y) = (f(z) —y)° (11)

Enng glgx——zz aj)(fvi,ﬂﬁj)—Z(Oéi—a;‘k)yi

i=1 j=1 i=1

- oD@+ ) (12

Regression function is given by Equation (4) and (10).

5. Conclusion

Support Vector Machines are an attractive approach to data modelling. They
combine generalization control with a technique to address the curse of dimen-
sionality. The formulation results in a global quadratic optimization problem
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with box constraints. SVM are trained by solving a constrained quadratic opti-
mization problem. SVM, implements mapping of inputs onto a high dimensional
space using a set of nonlinear basis functions. In removing the training patterns
that are not support vectors, the solution is unchanged and hence a fast method
for validation may be available when the support vectors are sparse.
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