Understanding Production Chain Business
Process Using Process Mining: A Case Study
in the Manufacturing Scenario

Alessandro Bettacchi®®), Alberto Polzonetti, and Barbara Re

Computer Science Division, University of Camerino, Camerino, Italy
{alessandro.bettacchi,alberto.polzonetti,barbara.re}@unicam.it

Abstract. Due to the continuous market change the enterprises need
to react fast. To do that a better understanding of the way to work
is needed. Indeed this was a real need of a manufacturing enterprise
working in the production of coffee machines and selling them all over
the world. In this paper, we present the experience made in the appli-
cation of process mining techniques on a rich set of data that such
enterprise collected during the last six years. We compare five mining
algorithms, such as: a-algorithm, Heuristics Miner, Integer Linear Pro-
gramming Miner, Inductive Miner, Evolutionary Tree Miner. We evalu-
ated algorithms according to specific quality criteria: fitness, precision,
generalization and simplicity. Even if comparison studies are already
available in the literature we check them according to our working con-
text. We conclude that the Inductive Miner algorithm is especially suited
for discovering production chain processes in the context under study.
The application of process mining gives the enterprise a comprehensive
picture of the internal process organization. Resulting models were used
by the company with successful results to motivate the discussion on the
need of developing a flexible production chain.

Keywords: Process mining * Process discovery - Business process -
ProM Framework - Mining algorithm - Production chain

1 Introduction

Manufacturing companies need to survive in a global market that asks for contin-
uous align of the production and the internal organization, to the needs coming
from the market. To do that a better understanding of the enterprise on the way
to work is needed. This gives also the possibility to continuously improve produc-
tion, avoid bottleneck and unwanted behaviors, or even workarounds enforced
by the workers. This was the need of the manufacturing company working in
the production of Coffee Machines motivated our work. After several meetings
with the management board of such company we concluded that “a depth inves-
tigation of the production process is mandatory to learn from the past and
to continuously improve the way to work”. The company wanted to check the
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validity of the production processes, especially in exceptional events, for under-
standing optimizations to be done in order to save time and money and to have
a more effective organization of work.

We based our study on such a real case study. The enterprise already have an
internal traceability systems as part of its technology infrastructure. Based on
the rich set of collected information (called log) via such system we run process
mining techniques. Process mining aim is to extract non-trivial and useful infor-
mation from event logs available in current information systems for discover-
ing, monitoring and improving real processes [5]. Process mining is “evidence-
based”, it ensures a close correspondence between modeled and observed behav-
ior because the evaluation and definition of the model is based on the real perfor-
mance of the process. Moreover Process mining is based on facts, the event data,
and it is addressed to discover the current “as-is” processes [15]. We use 450.000
events concerning six years production of 32 different products. At the end of
the study we give to the company a more comprehensive picture of the internal
process organization. The use of mining techniques allows to evaluate which is
the historical course of the manufacturing process. Such awareness support the
manager to enhance the entire production process.

This paper reports the results of the application of process mining in
the production chain. We assess and compare five mining algorithms such as
a-algorithm, Heuristics Miner, Integer Linear Programming Miner, Inductive
Miner, and Evolutionary Tree Miner. In particular, we compared the algorithms
performances according to specific quality criteria: fitness, precision, generaliza-
tion and simplicity. Even if this is not the first study aiming to compare such
algorithms [3,7], we run such analysis on our context to check general results on
a specific application scenario.

The paper is organized as follow. Section2 describes the case study, while
Sect. 3 reports some background material. Section4 gives an overview of the
results coming from the application of the process mining algorithms on the case
study. Finally, Sect. 5 reports conclusions and opportunities for further research.

2  Working Scenario

The case study refers to a manufacturing company producing and selling world-
wide coffee machines since more than seventy years. The production chain relies
on assembling components provided by several suppliers or internally produced.
The production process is spread over six production lines enumerated from 1
to 6. Each production line, then, is organized into stations with specific objec-
tives. The stations are identified by the letters A to F. According to the different
types of coffee machines the organization of the stations in production lines can
change. For production lines 5 and 6 there are only 5 stations: the station C is
not, present and all its activities are executed in station B.

The following are details of the stations.

— Station A starts with the activation of an RFID, which is used to uniquely
identify a coffee machine. The second step is assembling the body and the
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frame of a new coffee machine. The activated RFID is then associated to the
new coffee machine.

— Station B handles the hydraulic system: boiler installation, pipes assembly,
etc. Considering the production lines from 1 to 4 in Station B only a portion
of the hydraulic system is assembled, while in production lines 5 and 6 the
entire hydraulic system is assembled.

— Station C in the production lines from 1 to 4 completes the assembly of the
hydraulic system. In addition, when required by a particular quality certifica-
tion, a test of hydraulic circuit is also performed. In production lines 5 and 6
this station is not considered.

— Station D deals with electrical circuit: control unit, wiring, electrical connec-
tions between control unit and components are installed.

— Station E performs the testing. It is executed simultaneously for multiple
coffee machines.

— Station F completes the coffee machine including in the packaging manuals,
accessories and identification tag.

Production lines activities are also supported by two areas of pre-assembly in
which some electrical components (i.e. push button panels and electric cards)
are set up and some types of boiler are built.

From IT infrastructure point of view the enterprise uses several information
systems. In particular, the production lines, and related stations, are managed
by a customized Process-Aware Information System named Automatic System
for Chain COntrol (ASCCO). ASCCO traces all the information related to the
production line (assembly steps, assembly times, faults, repairs, ...). ASCCO
also integrates warehouse management providing real-time localization of com-
ponents and assembled coffee machines.

3 Process Mining Techniques

Process mining techniques are grouped into four classes: Discovery, Confor-
mance, Enhancement and Operational Support [15]. We concentrate on Discovery
and already defined mining algorithms [14]. This section provides an overview
of mining algorithms and a presentation of the tool and methods we use to run
our research.

During the past 15years, various process discovery techniques have been
proposed based on different approaches. In this work we focus on five of the
most common algorithms: a-algorithm [17]; HeuristicsMiner (HM) [20]; Integer
Linear Programming (ILP) Miner [18]; Inductive Miner (IM) [6,7]; Evolutionary
Tree Miner (ETM) [1]. These five algorithms were selected for two main reasons:
their availability in ProM 6.5' [19], the tool used for process mining, and the
format of the results that must be transformable to BPMN [11] for allowing the
evaluation of the discovered models. Moreover, the results in [3] showed that
ILP, HM and Genetic Miner [2] have good performance especially with real-life
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logs. Thus ETM was selected as evolution of the Genetic miner, while IM, which
is presented after the considered study, was selected because it outperforms the
other three algorithms according to its authors [7]. Finally the a-algorithm has
been considered as the reference for the minimum level of performance.

The a-algorithm main aim is to investigate the relationship between tran-
sitions for reconstructing causality from a set of sequences of events [17]. Even if
the application of the algorithm is quite simple it has a relevant problem to deal
with noise, i.e. rare and infrequent behavior (outliers), and incompleteness, i.e.
event logs containing only a fragment of all possible behaviors, namely too few
events [14]. Moreover, the a-algorithm cannot deal with short loops, i.e. loops of
length one or two, non-free-choice constructs and invisible and duplicated tasks.

The HeuristicsMiner can be considered an extension of the a-algorithm
which takes into account frequencies of events and sequences in the log [20]. To
do so, the algorithm only considers the order of the events within a case, while
the order of events among cases is not contemplated. The ordering is determined
by the timestamp of the activities in the log. The algorithm starts finding the
dependency relations between activities and the construction of the dependency
graph; then, for each activity, input and output expressions (group of connected
activities that precede or follow the concerned activity) are defined, and, finally,
long distance dependency are searched. The heuristic approach of the algorithm
abstracts from exceptional behaviors and noise (removing edges) making such
algorithm more suitable for many real-life logs.

The ILP Miner relies on concepts from the language-based theory of regions
[8,18]. Such theory allows to derive a Petri net starting from different classes of
languages. However, it seems to be not appropriate when it is directly applied to
the field of process discovery. One of the main issues is the size of the resulting
Petri net that is strictly (exponentially) dependent on the size of the log. To
overcome this issue, the authors combined the ideas from theory of regions with
Integer Linear Programming and used the causality relation introduced in the
a-algorithm.

The Inductive Miner is an algorithm based on a divide-and-conquer app-
roach [6,7]. Such approach is applied to the log splitting it in sub-logs and then
recursively applied to these sub-logs until they contain only a single activity. In
this way the problem of discovering a process model for a log is broken down in
discovering several sub-processes, one for each sub-log. The algorithm ensures to
return a sound, fitting and block-structured process model in finite time. Addi-
tionally the authors identified the conditions required to return a model that is
language-equivalent to the model of the original process that generated the log.

The Evolutionary Tree Miner is a genetic process mining algorithm which
allows the user to influence the discovery process based on preferences respect to
the four quality dimensions described above [1]. This algorithm uses process trees
as model representation which guarantees that all discovered models are sound,
i.e. models without deadlocks, livelocks or other anomalies [16]. Like most of the
genetic algorithms, ETM randomly creates an initial population then, according
to a fitness function, it selects the best individuals on which random mutation
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and crossover operations are applied for evolution. Such steps are repeated till
the model reaches one of the stop criteria. The algorithm, however, does not
ensure the reproducibility of the model: if it is applied multiple times to the
same log, the discovered model will most likely be different.

4 Process Mining into Practice

The complexity of the scenario is mainly given by the wide range of coffee
machines, which are all assembled on interchangeable production lines. The use
of process mining allows an in-depth analysis and representation of the produc-
tion. It is possible to find out the deviation compared with the expected process
model. In this work we considered 450.000 event logs related to six years of
production of 32 different coffee machines types. Logs were converted from rela-
tional format to eXtensible Event Stream (XES) [4], an XML-based data format
for processing event logs and natively supported by ProM. For each type of cof-
fee machine was created a .xes file that is used as input for the five discovery
algorithms: a-algorithm, Heuristics Miner, Integer Linear Programming Miner,
Inductive Miner, Evolutionary Tree Miner.

This section provides criteria to evaluate the quality of process models dis-
covered by mining algorithms.

4.1 Evaluation Criteria

In order to generate a process model in line with reality, mining algorithms should
maintain a proper balance between overfitting and underfitting [14]. Overfitting
means that the generated model is too specific and it only admits a behavior
similar to the one observed. Underfitting means that the generated model is too
general and it also accepts behaviors unrelated to the observed one. A “good”
discovered process model needs a proper balance between underfitting and over-
fitting properties. To asses them we refer to four quality dimensions: replay fit-
ness, precision, generalization and simplicity [14]. More in detail, replay fitness
expresses the portion of the log behavior that can be replayed by the process
model, precision is the measure of the level of underfitting, i.e. a poor precision
means that a model admits unusual behaviors than those shown in the logs,
conversely generalization is the measure of overfitting, i.e. an high generaliza-
tion allows also behaviors not seen in the log (maybe not yet observed), while
simplicity evaluates how easily a human interprets the process model. Simplic-
ity could be subject to different interpretation, therefore we considered some
complexity metrics [9] to perform an objective assessment. They are following
reported.

— Size represents the number of nodes (activities and connectors) of the model.

— Density (A) represents the ratio between the total number of arcs and the
maximum possible number of arcs for the same number of nodes.

— Coefficient of Network Connectivity (CNC) represents the ratio between arcs
and nodes.



198 A. Bettacchi et al.

— Awverage Connector Degree (ACD) represents the number of nodes a connector
is in average connected to.

— Connector Mismatch (MM) represents the sum of mismatches for each con-
nector type, where a mismatch is the difference between the total number of
outgoing edges from split connectors and the total number of incoming edges
at join connectors.

— Control-Flow Complexity (CFC) represents the sum over all connectors
weighted by their potential combinations of states after a split.

Generally, process models with higher values for such metrics are less under-
standable and more error-prone as empirical studies have shown [10,12,13].

4.2 Preliminary Results

For reasons of simplicity the logs are grouped for different types of coffee
machines and they are enumerated from 1 to 32. For each log set we run the
mining using the five algorithms and then we compare quality criteria on the
resulting models. Figure 1 shows 5 charts, one for each process mining algorithm,
in which values of fitness, precision and generalization, and the corresponding
averages are shown. We can observe that independently from the used algo-
rithm, the log sets related to coffee machine types from 1 to 5 and from 20 to 25
show high values for fitness and precision, but no generalization. Some log sets,
such as 16 and 29 for example, show in particular the inefficiency of a-algorithm
and ILP, while IM, HM and ETM have high performance. The log set related
to coffee machine 7 shows a different behavior: not only a-algorithm and ILP
have poor results, but also HM underperforms returning values even worse than
a-algorithm.

A more detailed analysis of the results is achieved by taking into account the
complexity measures. Table 1 shows all the quality values considering log sets
with high variability. In Table 1 the first column contains the name of the log set,
the second shows the used mining algorithm and the following columns present
calculated measures of quality and complexity as indicated in the table header.
Bold text highlights best values for each quality dimension. The evaluation of
the best discovered model is not simple. Considering the log set 7 we conclude
that ETM presents the best score compared to the other algorithms, it has high
values of fitness, precision and generalization and low complexity measures. The
choice for mining log set 19 is a bit more difficult. In this case HM has the
highest generalization, while fitness and precision are very close to best values,
but the complexity level is higher than the model resulting from the use of other
algorithms. Considering that ILP, IM and ETM have the same level of fitness,
precision and generalization, if we penalize models with bigger size, such as in
our case, the best algorithm is between ILP and IM. They differ in the ACD
and MM measures. Avoiding inconsistencies in the model we prefer to consider
readable model, therefore, IM is the most suitable algorithm for log set 19.

More general, we determined the maximum, minimum, average and stan-
dard deviation of fitness, precision and generalization in order to obtain the
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Fig. 1. Process mining results

overall trend of the five mining algorithms. Such values are reported in Table 2.
All algorithms show very high maximum values. The only one exception is the
generalization for ILP. It means that the algorithms have good performance for
some logs. Considering the minimum value, good performance for fitness and
precision are confirmed only by IM and ETM. These two algorithms also have
high average values and SD very low for fitness and precision quality dimen-
sions, which shows singular values very close. HM also has a very high average,
but the SD indicates a higher variability compared to IM and ETM. Regarding
generalization, the average level is rather low.

In conclusion, considering quality dimensions we observe that log sets without
or with low noise show, in many cases, higher values, albeit slightly, of fitness
and precision in model discovered with a-algorithm than those mined with ETM
or HM, whereas the generalization is clearly in favor of the latter techniques.

4.3 Discussion and Comparison

A first remark is that no algorithm provides a single log set with the highest
values for all the three quality dimensions. Another general remark is about
the execution time. ETM is the only algorithm that requires several minutes to
discover a model, all the others are significantly faster and they complete in a
few seconds.

Complexity measures are not very relevant when considered individually [9].
In order to obtain a better assessment, we estimated all values at once. Further-
more, since the maximum number of activities in our models are 6, complexity
measures rarely have very high values, therefore even small differences between
two models may be considered relevant. In addition, we point out that the smaller
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Table 1. Quality and complexity measures of some discovered models

Fitness Precision | Generalization | Size | A CNC ACD | MM | CFC
7 |« 0.564187531 |0 0 10 |0.18889 | 1.7 4.5 7 4
HM 0.454466469 0 0 9 0.13889 | 1.11111 | 3 2 2
ILP | 0.627994965 |0 0 11 | 0.15455| 1.54545 | 4.333 | 6 4
IM 0.999820965 | 0.94658 0.86624 10 0.12222 | 1.1 4 0 1
ETM | 0.998522961 1 0.98718 8 |0.125 0.875 0 0 0
8 |« 0.714285714 | 0.875 0.85417 11 |0.10909 | 1.09091 | 3 2 2
HM | 0.998500664 | 0.92188 | 0.90093 10 |0.12222 | 1.1 3 4 4
ILP |1 0.94444 | 0.49259 11 | 0.10909 | 1.09091 | 3 2 1
M 1 0.94444 | 0.49259 11 | 0.10909 | 1.09091 | 3 2 1
ETM | 0.997286013 |1 0.93333 8 |0.125 0.875 0 0 0
12 | « 0.564394626 |0 0 9 ]0.22222|1.77778 |5 4 1
HM | 0.998831267 | 0.94444 | 0.95586 9 |0.125 1 3 2 2
ILP |0.485082741 |0 0 13 | 0.11538 | 1.38462 | 3.4 2 5
M 0.99833442 1 0.96429 8 |0.125 0.875 0 0 0
ETM | 0.998418906 0.88462 0.96526 9 0.125 1 3 2 2
16 | « 0.285714286 1 0.9 14 0.09341 | 1.21429 | 3.167 | 13 5
HM |0.999471858 |1 0.9 8 |0.125 0.875 0 0 0
ILP |0.632302405 |0 0 11 |0.12727|1.27273|3.333 | 1 1
M 0.999471858 |1 0.9 8 |0.125 0.875 0 0 0
ETM |1 0.77222 0.35 10 0.12222 | 1.1 4 0 1
19| « 0.796564669 | 0 0 10 |0.13333|1.2 3 2 3
HM | 0.998594882 | 0.84848 | 0.83983 9 |0.13889|1.1111 |3 4 4
ILP |1 0.88333 | 0.45778 9 ]0.13889|1.1111 | 3.5 1 1
IM 1 0.88333 | 0.45778 9 0.13889 | 1.1111 |4 0 1
ETM |1 0.88333 | 0.45778 10 |0.12222|1.1 3.333 | 1 1
29 | « 0.491776479 |0 0 8 |0.26786 | 1.875 6 5 1
HM | 0.99682937 1 0.66667 7 10.14286 | 0.85714 | 0 0 0
ILP |0.438372793 |0 0 8 |0.16071|1.125 3 2 0
IM 0.999582812 | 1 0.4 8 0.14286 | 1 3 2 0
ETM | 0.99682937 1 0.66667 7 10.14286 | 0.85714 | 0 0 0

models usually have higher density [10]. According to these guidelines, the sim-
plest models are those mined with ETM, HM and IM, a-algorithm, once again
has the worst performance.

A final consideration concerns the possible relationship between complexity
and quality measures. The evaluation does not permit any conclusion since there
are models having a similar level of complexity and very different quality values,
e.g. ILP and IM on log set 29 in Table 1, and other models with similar quality
values and different complexity.

In summary, after an overall evaluation of all metrics, we can say that the
most suitable mining algorithms in our context are IM and ETM. They result
with the highest values of fitness and precision for each log set. Considering the
average values IM is a bit better than ETM, and similar values can be observed
for the generalization, in such case ETM is slightly better, then a new trace may
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be more readily accepted by models discovered by ETM than by IM. Also HM
presents high values of fitness and precision for most of the log, but on those
with high noise, e.g. Log 7, it underperforms. Since the noise in the event logs
may increase as time goes, we preferred not to take into account an algorithm
with such behavior. ILP and a-algorithm are least suitable because both under-
perform in all quality dimensions. With regard to the degree of simplicity, the
algorithms are almost equivalent for the models corresponding to log without
or with low noise, therefore the comparison was made on the remaining models.
ILP and a-algorithm show significantly high complexity values, in some cases
nearly twice those of other algorithms, so they remain consistent with poor per-
formance. IM and ETM are comparable. They have similar values for most of
the log set and present slightly different measures for those that are not similar.
Models discovered by HM are on average a bit simpler than those of IM and
ETM. We conclude that we preferred IM over ETM due to its performance.

Table 2. Aggregate values for quality dimensions.

Min. Max. Avg. SD

«a 0 1 0.836593796 0.284922192
éﬁ) HM 0.45447 1 0.981982191 0.094753898
EILP 0.438377 1 0.909793346 0.190947749
= IM 0.99375 1 0.999559383 0.001182631

ETM 0.99493 1 0.999250868 0.001191822

«@ 0 1 0.774045 0.410313551
S HM 0 1 0.956853125 0.174626942
'§ ILP 0 1 0.7719325 0.381931605
& IM 0.88333 1 0.988434375 0.026802914

ETM 0.77222 1 0.974649375 0.056454291
E «a 0 0.9 0.127684688 0.240198833
st HM 0 0.95586 0.35814125 0.390181461
= ILP 0 0.49259 0.133032188 0.179213299
E M 0 0.96429 0.267528125 0.316556286
O ETM 0 0.98718 0.32354 0.36362457

5 Conclusion and Future Work

In a competitive globalized market, manufacturing companies are forced to con-
tinuous improvements to advance. A relevant aspect is that manufacturing is
characterized by quite complex production processes. In order to adjust such
processes to new requirements a better understanding of the actual processes
is needed. The concept of process mining provided appropriate techniques to
achieve that purpose.

In this paper, we presented a benchmarking of five process mining algorithms
to choose the most appropriate to the motivating case study. a-algorithm, HM,
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ILP, IM ed ETM were applied. We then compared such mining algorithms using
fitness, precision and generalization values and complexity metrics, for simplic-
ity, of the discovered models. Models mined by HM, IM and ETM had high
fitness, high precision and low complexity. At the end, the algorithm with the
best comprehensive assessment is IM and therefore it is the most suitable for our
purposes. Similar studies have already been performed while not in manufactur-
ing. In [3] is presented a comprehensive experimental analysis on the quality of
a broad range of mining algorithms: the study reveals that the HM provides the
best outcomes, and this is consistent with the findings in our work if we exclude
the IM and ETM which have not been taken into account in such study. The
outcomes of our work are also validated by [7], where the comparison of mining
algorithms, except a, shows that IM and ETM have the best results.

The results of this work have been used by the company for further analysis of
the production process. This activity (analysis) revealed that only a small portion
of non-standard traces depends on run-time errors of ASCCQO. The remaining
non-standard traces are due to incorrect managing on the production line of
the procedures for fixing or replacing faulty components identified from testing,
and of the implementation of some special, and infrequent, customizations. This
awareness has driven the company to plan the reorganization of part of the
production processes, in order to include such behaviors, and the consequent
update of ASCCO for managing these changes.

This paper is part of a larger project whose aim is the use of process min-
ing techniques to support the Business Process Evolution in production chain.
The idea is to extend the current traceability system, ASCCO, in order to auto-
matically extract logs, use Inductive Miner to discover the process model, and
manage the evolution of such processes through version management approach.
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