
Getting the Data

Barbara Re

Process Mining

1 / 52

Data Sources

2 / 52

Data Sources

Process mining is impossible without proper event logs

� The challenge is to extract such data from a variety of data sources, e.g.,
databases, flat files, message logs, transaction logs, ERP systems, and document
management systems

The goal of process mining is to answer questions about operational processes

� What really happened in the past?
� Why did it happen?
� What is likely to happen in the future?
� When and why do organizations and people deviate?
� How to control a process better?
� How to redesign a process to improve its performance?

3 / 52

Process Mining Workflow

4 / 52

A fragment of some event log

Each line corresponds to an event

5 / 52

Structure of event logs

� A process consists of cases (also called
instance)

� A case consists of events such that
each event relates to precisely one case

� Events within a case are ordered
� Events can have attributes (e.g. of

typical attribute names are activity,
time, costs, and resource)

6 / 52

Structure of event logs

Definition (Event)
Let E be the event universe, i.e., the set of all possible event identifiers

Events may be characterized by various attributes, e.g., an event may have a
timestamp, correspond to an activity, is executed by a person, has associated costs, etc.

Definition (Attribute)
Let AN be a set of attribute names. For any event e P E and name n P AN :

� #npeq is the value of attribute n for event e
� If event e does not have an attribute named n, then #npeq “K (null value)

7 / 52

Standard attributes we will assume some conven-
tions

For convenience we assume the following standard attributes (none of these attributes is
mandatory):

� #activitypeq is the activity associated to event e
� #timepeq is the timestamp of event e
� #resourcepeq is the resource associated to event e
� #transpeq is the transaction type associated to event e, examples are schedule,

start, complete, and suspend

Timestamps should be non-descending in the event log
We assume a time domain T , i.e., #timepeq P T for any e P E

8 / 52

Transaction type attribute

The transaction type attribute #transpeq refers to the life-cycle of activities, we assume
the following transactional life-cycle model

Example: transactional events for five different activity instances

9 / 52

Overlapping activity instances

We often refer to the event by its activity name - Technically this is not correct!!!!

There may be many events that refer to the same activity name, within a case these
events may refer:

� to the same activity instance (e.g., start and complete events)
� to different activity instances (e.g., in a loop)

This distinction is very important when measuring service times, waiting times, etc.

Example: Consider the scenario in which the same activity is started twice for the same
case, i.e., two activity instances are running in parallel, and then one of them completes.

Did the activity that was started first complete or the second one?

They leave the same footprint in the event log!!! 10 / 52

Solving Correlation Problems

� by adding information to the log

� When implementing systems, such information can easily be added to
the logs; just provide an activity instance attribute to keep track of this

� When dealing with existing systems this is not as simple as it seems,
for example, when correlating messages between organizations there
may be the need to scan the content of the message to find a suitable
identifier (e.g., address or name)

� by using heuristics

� One could just assume a first-in-first-out order and pick the first
scenario!

� One may introduce timeouts when the time between a start event and
complete event is too long

11 / 52

Classifier

Some process mining techniques take into account the transactional model whereas
others just consider atomic events

Sometimes we just want to focus:
� on complete events
� on withdrawals

This can be supported by filtering (e.g., removing events of a particular type) and by the
concept of a classifier

A classifier is a function that maps the attributes of an event onto a label used in the
resulting process model

Definition (Classifier)
For any event e P E event universe, e is the name of the event

12 / 52

Classifier

In case e = #activitypeq –> xpa, b, c, d , eqy

In case e = #activitypeq,#transpeq –> xpa, scheduleqpa, assignqpa, startqpa, completeqy

We assume the classifier e = #activitypeq as the default classifier
This is why we considered the activity attribute to be mandatory

13 / 52

Case, Trace and Event Log Definition
Definition (Case)
Let C be the case universe, i.e., the set of all possible case identifiers. Cases, like events,
have attributes. For any case c P C and name n P AN : #npcq is the value of attribute
n for case c (#npcq “K if case c has no attribute named n). Each case has a special
mandatory attribute trace, #tracepcq P E˚. ĉ “ #tracepcq is a shorthand for referring
to the trace of a case.

Definition (Trace)
A trace is a finite sequence of events σ P E˚ such that each event appears only once,
i.e., for 1 ď i ă j ď |σ| : σpiq ‰ σpjq.

Definition (Event log)
An event log is a set of cases L Ď C such that each event appears at most once in the
entire log, i.e., for any c1, c2 P L such that c1 ‰ c2 : θpĉ1q X θpĉ2q “ H.

If an event log contains timestamps, then the ordering in a trace should respect these
timestamps, i.e., for any c P L, i and j such that 1 ď i ă j ď |ĉ| :

#timep ˆcpiqq ď #timep ˆcpjqq.
14 / 52

Events and cases are represented using unique iden-
tifiers

� An identifier e P E refers to an event –> This is important as there may be many
events having identical attributes, e.g., start events of some activity a may have
been recorded for different cases and even within a case there may be multiple of
such events

� An identifier c P C refers to a case –> This is important as there may be different
cases that followed the same path in the process

These identifiers are just a technicality that helps us to point to particular events and
cases, they do not need to exist in the original data source and may be generated
when extracting the data from different data sources

15 / 52

Formal Representation (s)

We can use the given formal representation to query the event log and use it as a
starting point for analysis and reasoning

� t#activitypeq|c P L^ e P ĉu is the set of all activities appearing in log L
� t#resourcepeq|c P L^ e P ĉ ^#transpeq “ manualskipu is the set of all resources

that skipped an activity
� ta P A|c P L^ a “ #activitypĉp1qq ^ a “ #activitypĉp|ĉ|qqu is the set of all

activities that served as start and end activity for the same case

16 / 52

Depending on the attributes in the log, different
types of analysis are possible

The Petri net can be discovered by just using the activity attribute (#activity(e))

To measure durations of activities, one needs to have a transactional attribute
(#trans(e)) to distinguish start from completion, and timestamps (#time(e))

To measure costs, the costs attribute is used (#costs(e))

A social network can be discovered using the resource attribute (#resource(e))

17 / 52

Process Mining Types

18 / 52

Simple Event Log

Definition (Trace)
Let A be a set of activity names
A simple trace σ is a sequence of activities, i.e., σ P A˚

A simple event log L is a multi-set of traces over A , i.e., L P BpA˚
q

For example pxa, b, c, dy3, xa, c, b, dy2, xa, e, dyq defines a log containing 6 cases. In
total there are 3 X 4 + 2 X 4 + 1 X 3 = 23 events

In a simple log there are no attributes, e.g., timestamps and resource information are
abstracted from

19 / 52

Simple Event Log

Definition (Transforming an event log into a simple event log)
Let L Ď C be an event log. Assume that a classifier has been defined: e is the name of
event e P E . This classifier can also be applied to sequences, i.e.,
xe1, e2, ..., eny “ xe1, e2, ..., eny
L “ rpĉq|c P Ls s the simple event log corresponding to L

All cases in L are converted into sequences of (activity) names using the classifier

A case c P L is an identifier from the case universe C

ĉ “ #tracepcq “ xe1, e2, ..., eny P E˚ is the sequence of events executed for c

ĉ “ xe1, e2, ..., eny maps these events onto (activity) names using the classifier

20 / 52

Simple Event Log

If we apply this transformation to the event log shown our previous example while
assuming the default classifier (e “ #activitypeq), then we obtain the event log

L “ rxregisterrequest, examinethoroughly , checkticket, decide, rejectrequesty,

xregisterrequest, checkticket, examinecasually , decide, paycompensationy,

xregisterrequest, examinecasually , checkticket, decide, reinitiaterequest,

examinethoroughly , checkticket, decide, paycompensationy,

xregisterrequest, checkticket, examinethoroughly , decide, rejectrequesty, . . .s

Another classifier could have been used to create a simple log, when using the classifier
e “ #resourcepeq, the following log is obtained:

L “ rxPete,Sue,Mike, Sara,Petey, xMike,Mike,Pete, Sara,Elleny,

xPete,Mike,Ellen, Sara,Sara, Sean,Pete, Sara,Elleny, xPete,Mike, Sean,Sara,Elleny, . . .s

21 / 52

XES - eXtensible Event Stream

22 / 52

XES - eXtensible Event Stream

� Until 2010 the de facto standard for storing and exchanging event logs was MXML
(Mining eXtensible Markup Language)

� In September 2010, the XES format was adopted by the IEEE Task Force on
Process Mining and became the de facto exchange format for process mining

� On November 11th, 2016, the XES Standard has been officially published by the
IEEE as an official IEEE standard

� See www.xes-standard.org for detailed information about the standard

23 / 52

XES - eXtensible Event Stream

� The XES standard defines a grammar for a tag-based language whose aim is to
provide designers of information systems with a unified and extensible
methodology for capturing systems behaviors by means of event logs and event
streams is defined in the XES standard

� An XML Schema describing the structure of an XES event log/stream and a XML
Schema describing the structure of an extension of such a log/stream are included
in this standard

� A basic collection of so-called XES extension prototypes that provide semantics to
certain attributes as recorded in the event log/stream is included in this standard

24 / 52

XES - Principles

� Simplicity Use the simplest possible way to represent information. XES logs should
be easy to parse and to generate, and they should be equally well human-readable.
In designing this standard, care has been taken to take a pragmatic route wherever
that benefits an ease of implementation.

� Flexibility The XES standard should be able to capture event logs from any
background, no matter what the application domain or IT support of the observed
process. Thus, XES aims to look beyond process mining and business processes,
and strives to be a general standard for event log data.

� Extensibility It must be easy to add to the standard in the future. Extension of the
standard should be as transparent as possible, while maintaining backward and
forward compatibility. In the same vein, it must be possible to extend the standard
for special requirements, e.g. for specific application domains, or for specific tool
implementations.

� Expressivity While striving for a generic format, event logs serialized in XES should
encounter as little loss of information as possible. Thus, all information elements
must be strongly typed, and there must be a generic method to attach
human-interpretable semantics to them.

25 / 52

XES meta model expressed in terms of a UML class
diagram

26 / 52

XES meta model expressed in terms of a UML class
diagram

� Log object, which contains all event information that is related to one specific
process

� A log contains an arbitrary number (may be empty) of trace objects. Each trace
describes the execution of one specific instance, or case, of the logged process

� Every trace contains an arbitrary number (may be empty) of event objects. Events
represent atomic granules of activity that have been observed during the execution
of a process.

� The log, trace, and event objects contain no information themselves. They only
define the structure of the document. All information in an event log is stored in
attributes. Logs, traces, and events each contain an arbitrary number of attributes.
There are six types of elementary attributes, each defined by the type of data value
they represent. Next to these elementary attributes, there are two types of
collection attributes. For providing maximum flexibility in data storage, XES allows
nested attributes, i.e. attributes can themselves have child attributes (note that
this feature is required when using lists and/or containers).

27 / 52

XES classifier

The XES format makes event classification configurable and flexible, by introducing the
concept of event classifiers. An event classifier assigns to each event an identity, which
makes it comparable to other events (via their assigned identity).

Classifiers are defined via a set of attributes, from which the class identity of an event is
derived. In its simplest form, an event classifier is defined by one attribute, and the
value of that attribute would yield the class identity of an event.

< classifier name="Activity classifier" keys="name status" / >

28 / 52

Challenges when extracting event logs

29 / 52

Challenges when extracting event logs

� Correlation - Events in an event log are grouped per case. This simple requirement
can be quite challenging as it requires event correlation, i.e., events need to be
related to each other.

� Timestamps - Events need to be ordered per case. Typical problems: only dates,
different clocks, delayed logging.

� Snapshots - Cases may have a lifetime extending beyond the recorded period, e.g.,
a case was started before the beginning of the event log.

� Scoping - How to decide which tables to incorporate?
� Granularity - The events in the event log are at a different level of granularity than

the activities relevant for end users.

30 / 52

Data Quality

31 / 52

Conceptualizing Event Logs

The given conceptualization discuss the key concepts without being distracted by
the formalities and the technicalities of XES standard.

32 / 52

Data Quality Issues

� Missing in log - The entity exists (or existed) in reality, but was not recorded.

� For example, an event (e.g., taking a blood sample) occurred but it
was not captured by the information system.

� Missing in reality - The entity does not exist and never existed in reality, but was
recorded.

� For example, a scheduled doctor’s appointment never took place due to
an emergency, but it was recorded by the information system anyway.

� Concealed in log - The entity was recorded and exists (or existed) in reality, but it
is hidden in a larger less structured data set.

� For example, the same entity may appear multiple times in the event
log. The scope of the data set may also be much larger than needed
for analysis.

33 / 52

Type of problem (MIL, MIR, or CIL) versus the en-
tity (CASE, AI, or EV) affected

34 / 52

TABLE 5.3

35 / 52

TABLE 5.4

36 / 52

12 Guidelines for Logging (I/II)

� GL1 - Reference and attribute names should have clear semantics, i.e., they should
have the same meaning for all people involved in creating and analyzing event data

� GL2 - There should be a structured and managed collection of reference and
attribute names

� GL3 References should be stable (e.g., identifiers should not be reused or rely on
the context)

� GL4 Attribute values should be as precise as possible. If the value does not have
the desired precision, then this should be indicated explicitly (e.g., through a
qualifier)

� GL5 Uncertainty with respect to the occurrence of the event or its references or
attributes should be captured through appropriate qualifiers

� GL6 Events should be at least partially ordered. The ordering of events may be
stored explicitly (e.g., using a list) or implicitly through an attribute denoting the
event?s timestamp

37 / 52

12 Guidelines for Logging (II/II)

� GL7 If possible, also store transactional information about the event (start,
complete, abort, schedule, assign, suspend, resume, withdraw, etc.)

� GL8 Perform regularly automated consistency and correctness checks to ensure the
syntactical correctness of the event log

� GL9 Ensure comparability of event logs over time and different groups of cases or
process variants

� GL10 Do not aggregate events in the event log used as input for the analysis
process

� GL11 Do not remove events and ensure provenance. Reproducibility is key for
process mining

� GL12 Ensure privacy without losing meaningful correlations

38 / 52

Flattening Reality into Event Logs

39 / 52

Challenges when extracting event logs

In order to do process mining, events need to be related to cases!

This is natural as a process model describes the life-cycle of a case of a particular type,
all activities in a conventional process model (independent of the notation used)
correspond to status changes of such a case

ó

We will refer to such process models as flat models

ó

However, it is important to realize that real-life processes are not flat.

40 / 52

Flattening Reality - Example

Class diagram showing the relations between orders, order lines, deliveries, and delivery
attempts

41 / 52

Flattening Reality - Example

42 / 52

Flattening Reality - Example II

43 / 52

Flattening Reality - Example III

44 / 52

Challenges when extracting event logs

Clearly the timestamps in the four tables correspond to events related to the ?overall
ordering and delivery? process

However, when creating an event log, each event needs to be associated to a particular
case –> Therefore, we need to flatten the four tables into one table with a ?case id?
column

However, one can choose from four types of cases: orders, order lines, deliveries, and
attempts. Any record in one of the four tables potentially corresponds to a case

ó

Which one to choose?

45 / 52

Flattening Reality - Example IV

All events that can be related to order 91245. The 14 rounded rectangles correspond to
events associated to case 91245. The squared rectangles represent records in one of the
four tables

46 / 52

Flattening Reality - Example IV (part 1)

47 / 52

Flattening Reality - Example IV (part 2)

48 / 52

Flattening Reality - Example V

Events extracted from all four tables using
order records from the Order table as a
starting point –> This is a possible way to
flatts the original database consisting of four
tables.

The flattened event log is like a view on the
complete data set

Alternative views are possible

49 / 52

Flattening Reality - Example V (highlight)

50 / 52

Various selections of events can be used!!!

All events that can be related to order line 112345

51 / 52

2D vs 3D

Although it is important to view business processes in 3-D, we often need to resort to
2-D models for a variety of reasons.

� the data sources provided may only allow for a 2-D view, e.g., only one table is
provided as input

� users expect process models in terms of classical 2-D process modeling languages
such as BPMN, UML ADs, Statecharts, BPEL, YAWL, WF-nets, and EPCs

� most process mining techniques require flattening the data

52 / 52

	Introduction

