Process Mining

Universita di Camerino

1336

Lesson 7 — Alpha Algoritm

Doc. Cognini Riccardo

The 3 main type of Mining

* Discovery (here we are!)

e Conformance

e Enhancement

Discovery and Algorithms

Definition 5.1 (General process discovery problem) Let L be an event log as de-
fined in Definition 4.3 or as specified by the XES standard (cf. Sect. 4.3). A process
discovery algorithm is a function that maps L onto a process model such that the
model is “representative’ for the behavior seen in the event log. The challenge is to
find such an algorithm.

Definition 5.2 (Specific process discovery problem) A process discovery algorithm
is a function y that maps a log L € B(27*) onto a marked Petri net y (L) = (N, M).
Ideally, N is a sound WF-net and all traces in L correspond to possible firing se-
quences of (N, M).

Discovered Models

Quality Criteria of Discovered models:

[Fitness: the discovered model should allow for the behavior
seen in the event log

A Precision: the discovered model should not allow for
behavior completely unrelated to what was seen in the
event log

1 Generalization: the discovered model should generalize the
example behavior seen in the event log

W Simplicity: the discovered model should be as simple as
possible

WorkFlow Nets

WorkFlow-Nets are used such as discovered models
They are a subclass Petri-NET in which:
O There is a START place with just 1 Token inside
1 There is a END place

p1 b p3
@—» a f <—O<7 e d
start PS

end

The Alpha-Algoritm

Ordering Relation considered by the Algoritm

Definition 5.3 (Log-based ordering relations) Let L be an event log over .7, i.e.,
LeB(w@*). Leta,b e of:

e a > bifand only if there is a trace o = {f|,1r, 13, ..., ty)andi € {I,....n — 1}
suchthato e Landf; =a and tj1 =b

a—pbifandonlyifa >; band b # a

a#ypbifandonlyifa #; band b #; a

alpbifandonlyifa >; band b >} a

Consider for instance L; = [(a,b,c,d)>, (a.c,b,d)?, (a, e, d)] again. For this
event log, the following log-based ordering relations can be found

>, ={@.b).(a,c), (a e),b,c) (b, b.d),d),ed}

—L, = {(a, b),(a,c), (a,e), (b,d),(c,d), (e, d)}
#r, = {(a, a), (a,d), (b, b), (b,e), (c,c), (c,e),(d,a),(d,d), (e, b), (e c), (e, e)}
I, = {®.0). (c. D)}

The Alpha-Algoritm

Patterns considered by the algortithm

~a
O
)

(a) sequence pattern: a—b

X

Y

LY~
A Y

Y
P

a c
A vy Y
c b
~A Y
(b) XOR-split pattern: (c) XOR-join pattern:
a—b, a—c, and b#c a—c, b—c, and a#b

X
v

X

§
Y

¥
\

~al
c b

(d) AND-split pattern: (e) AND-join pattern:
a—b, a—c, and b||c a—c, b—c, and a||b

The Alpha-Algoritm

The Sets used by the algorithm:

Definition 5.4 («-algorithm) Let L be an event log over T C /. o(L) is defined
as follows.

(1) Tp ={teT |d,cp t €0}

(2) Ty ={teT|dyeL t =first(o))}

3) To={teT |d,er t =last(o)}

4 X ={(A,B)|AC T, N A#WV AN BCT, N B£EW A YueaVpep a =1
b N Ny .area ar ¥ a2 N Yy, pep by #1 bo}

5) Yr={(A,B)e X1 |V p)ex,ACA ABC B = (A.B)=(A", B")}

6) PL={pa.p | (A, B)yeY }Ulip, oL}

(7) Fr={(a,pa.p) | (A.B)yeY, naecA} U {(pa,g.b)|(A,B)eY, N be
B} U{(ip,t) |t T} U{(t,op) |t €To}

(8) a(L)=(Pr, Ty, Fp)

Some Examples!

Alpha Algorithm Limitations

Short Loops (i.e. loops of one or two activities)

Fig. 5.10 Incorrect WF-net
N7 derived from

L7 =[(a.c)’ {a.b.c)’,
(a,b,b,c)?, (a,b,b,
b,b,c)']

Fig. 5.11 WF-net N; having
a so-called “‘short-loop™ of
length one

(@) —

:

—(

:

Alpha Algorithm Limitations

Short Loops (i.e. loops of one or two activities)

o OO -0

Fig. 5.12 Incorrect WF-net Ng derived from Lg = [{a, b, d)3, (a,b,c,b, d)z, (a,b,c,b,c,b.d)]

Ok ¢ =0

Fig. 5.13 Corrected WF-net N¢ having a so-called “short-loop™ of length two

Alpha Algorithm Limitations

Non-Local Dependences

Lo=[(a,c,d)”, (b, c,e)*]

L PO

Fig. 5.14 WF-net Ng having a non-local dependency

Fig. 5.15 Two constructs
that may jeopardize the

~

/

~
e “ 0O,
correctness of the discovered
WE-net Xit T~ c
b / W’
7
/ \

_

/\

QUESTIONS?

