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Motivations
} Changes in business context

} New market conditions
} Better lead time

} Manufacturing characterized by complex production 
processes

} Company forced to continuous improvements to advance

} Better understanding of the actual production processes

Process mining provides appropriate techniques 
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Process Mining Algorithm
Several Algorithms are available

} α-algorithm

} Fuzzy Miner

} HeuristicsMiner (HM)

} Integer Linear Programming (ILP) Miner

} Inductive Miner (IM)

} Evolutionary Tree Miner (ETM)



Why such algorithms? (I)
} ILP, HM and Genetic Miner have good performance 

especially with real-life logs1

} ETM is the natural progression of the Genetic Miner

} IM is newer than1, but it outperforms the other three 
algorithms2

} α-algorithm is the reference for the minimum level of 
performance

1 De Weerdt, J. et al., 2012. A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life 
event logs. Information Systems, 37(7), pp.654–676.
2 Leemans, S.J.J., Fahland, D. & van der Aalst, W.M.P., 2014. Discovering block-structured process models from event logs containing 
infrequent behaviour. In N. Lohmann, M. Song, & P. Wohed, eds. Lecture Notes in Business Information Processing. Springer International 
Publishing, pp. 66–78.



Why such algorithms? (II)
} Algorithms are public available (in ProM 6.5)

} The results may be transformed in BPMN

} Ensures an unambiguous comparison

} Only exception is the Fuzzy Miner

} It returns a fuzzy model that is not a formalism to represent BP

} Discovered models provide an overall behavior with understandable 
and high-level information



Case study: a coffee machine company
} Produces professional coffee machines

} The main business is the assembling
} Only a small portion of the components is made internally

} Production is shared on 6 production lines identified by 
numbers (1..6)

} Each production line is divided into stations, identified by 
the letters A to F, with clear tasks
} Lines from 1 to 4 have six stations
} Lines 5 and 6 have only five stations

} Production lines, and related stations, are managed by a 
customized PAIS named ASCCO



Process mining into practice
} Available more than 450000 event logs

} 6 years of production
} related to the manufacturing of 32 different coffee machine

} Logs stored in a relational DB

} Process mining performed with ProM 6.5 framework

} Logs are converted in Extensible Event Stream (XES)1

format

} Mining algorithm are applied to all 32 sets of log

} Discovered process models are converted to BPMN
1 Günther, C.W. & Verbeek, E., 2014. XES Standard Definition ver. 2.0



Discovered BP models for coffee machine

Fuzzy model

Samples for Model 7

α-algorithm

Inductive Miner



Some Conclusions about discovered models
} BP models discovered with α-algorithm or ILP are not 

meaningful for most of the models of coffee machines
} Confused models
} Difficult to obtain useful information

} Fuzzy miner is suitable in modelling manufacturing 
processes
} Understandable discovered models
} Activities are highly connected

} HM, IM and ETM return very comprehensible models

} ETM requires several minutes to discover a BP model 
while other algorithms complete in few seconds



Evaluation criteria for BP models (I)
A BP model may be evaluated according to four quality 
dimensions:
} Replay fitness expresses the portion of the log behavior 

that can be replayed by the process model

} Precision is the measure of the level of underfitting

} Generalization is the measure of overfitting

} Simplicity evaluates how easily a human interprets the 
process model

van der Aalst, W.M.P., 2011. Process Mining: Discovery, Conformance and Enhancement of Business Processes, Springer Berlin Heidelberg



Evaluation criteria for BP models (II)
Complexity metrics for an objective evaluation of Simplicity
} Size: number of nodes of the model
} Density (Δ): [total number of arcs]/[max number of arcs 

for the same number of nodes]
} CNC: arcs/nodes
} ACD: number of nodes a connector is in average 

connected to
} MM: sum of mismatches for each connector type
} CFC: sum over all connectors weighted by their potential 

combinations of states after a split

Mendling, J., 2008. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for 
Correctness, Springer Publishing Company



Discovered BP models evaluation (I)



Discovered BP models evaluation (II)
Fitness Precision Generalization Size Δ CNC ACD MM CFC

7

α 0.5642 0 0 10 0.189 1.7 4.5 7 4
HM 0.4545 0 0 9 0.139 1.111 3 2 2
ILP 0.628 0 0 11 0.155 1.545 4.33 6 4
IM 0.9998 0.947 0.866 10 0.122 1.1 4 0 1
ETM 0.9985 1 0.987 8 0.125 0.875 0 0 0

8

α 0.7143 0.875 0.854 11 0.109 1.091 3 2 2
HM 0.9985 0.922 0.901 10 0.122 1.1 3 4 4
ILP 1 0.944 0.493 11 0.109 1.091 3 2 1
IM 1 0.944 0.493 11 0.109 1.091 3 2 1
ETM 0.9973 1 0.933 8 0.125 0.875 0 0 0

12

α 0.5644 0 0 9 0.222 1.778 5 4 1
HM 0.9988 0.944 0.956 9 0.125 1 3 2 2
ILP 0.4851 0 0 13 0.115 1.385 3.4 2 5
IM 0.9983 1 0.964 8 0.125 0.875 0 0 0
ETM 0.9984 0.885 0.965 9 0.125 1 3 2 2

16

α 0.2857 1 0.9 14 0.093 1.214 3.17 13 5
HM 0.9995 1 0.9 8 0.125 0.875 0 0 0
ILP 0.6323 0 0 11 0.127 1.273 3.33 1 1
IM 0.9995 1 0.9 8 0.125 0.875 0 0 0
ETM 1 0.772 0.35 10 0.122 1.1 4 0 1

19

α 0.7966 0 0 10 0.133 1.2 3 2 3
HM 0.9986 0.848 0.84 9 0.139 1.1111 3 4 4
ILP 1 0.883 0.458 9 0.139 1.1111 3.5 1 1
IM 1 0.883 0.458 9 0.139 1.1111 4 0 1
ETM 1 0.883 0.458 10 0.122 1.1 3.33 1 1

29

α 0.4918 0 0 8 0.269 1.875 6 5 1
HM 0.9968 1 0.667 7 0.143 0.857 0 0 0
ILP 0.4384 0 0 8 0.161 1.125 3 2 0
IM 0.9996 1 0.4 8 0.143 1 3 2 0
ETM 0.9968 1 0.667 7 0.143 0.857 0 0 0



Discovered BP models evaluation (III)
} α-algorithm and ILP have a good performance in a small 

number of data variations

} Underperform in all quality dimensions

} Show significantly high complexity measures

} IM and ETM have best performance on all the logs

} Highest values of  fitness and precision for each log

} “Good” values of complexity



Discovered BP models evaluation (IV)
} Also HM has good performance

} High fitness and precision

} Complexity comparable to IM and ETM

} The only exception is for log set 7 

} Results do not show specific relationship between 
complexity and quality measures

} IM is preferred over ETM due to its performance



Conclusion and Future Work
} Results have been used for further analysis

} Deviated traces depend on:

} Run-time errors of PAIS (only a small portion)

} Incorrect procedures for fixing/replacing faulty components

} Implementation of some special customizations

} New process awareness drove the company to 
reorganize production

} Integrating Process Mining in ASCCO
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