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Data Explosion
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Increasing relevance of Information systems ’

The importance of information systems is not only reflected by the
spectacular growth of data, but also by the role that these systems play
in today’s business processes as the digital universe and the physical
universe are becoming more and more aligned.

= the “state of a bank” is mainly determined by the data stored in the
bank’s information system.

= the “real” state of a warehouse is the one in the managing
information system, and not the one of the physical world
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Internet of Events

The spectacular growth of the digital universe makes it possible to
record, derive, and analyze events. The |IoE is composed of:

= The Internet of Content (IoC), i.e., all information created by
humans to increase knowledge on particular subjects. The loC
includes traditional web pages, articles, encyclopedia like
Wikipedia, YouTube, e-books, newsfeeds, etc.

= The Internet of People (loP), i.e., all data related to social
interaction. The IoP includes e-mail, Facebook, Twitter, forums,
LinkedIn, etc.

= The Internet of Things (loT), i.e., all physical objects connected to
the network. The loT includes all things that have a unique id and
a presence in an Internet-like structure.

m The Internet of Locations (loL) which refers to all data that have a
geographical or geospatial dimension. With the uptake of mobile
devices (e.g., smartphones) more and more events have location
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Digitization of life and events
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Archetypal customer journey stages e

1. Awareness of product or brand: The customer needs to be aware of the product
and/or brand to start a customer journey.

2. Orientation: the customer is interested in a product, possibly of a particular
brand.

3. Planning/shopping: the customer may decide to purchase a product or service.
This requires planning and/or shopping, e.g., browsing websites for the best
offer.

4. Purchase or booking. If the customer is satisfied with a particular offering, the
product is bought or the service (e.g., flight or hotel) is booked.

5. (Wait for) delivery: This is the stage after purchasing the product or booking the
service, but before the actual delivery.

6. Consume, use, experience: the product or service is used. While using the
product or service, a multitude of events may be generated. The recorded event
data can be used to understand the actual use of the product by the customer.

7. After sales, follow-up, complaints handling: This is the stage that follows the
actual use of the product or service. At this seventh stage, new add-on products
may be offered (e.g., air filters).
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Not a linear process - establishing relationships between events, is one of the key

challenges in data science (Event correlation).
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four V’s of Big Data
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e ey
Data Science ,

Data science is an interdisciplinary field aiming to turn data into real value. Data may
be structured or unstructured, big or small, static or streaming. Value may be provided
in the form of predictions, automated decisions, models learned from data, or any type
of data visualization delivering insights. Data science includes:

» data extraction

data preparation

data exploration

data transformation

storage and retrieval

computing infrastructures

various types of mining and learning,
presentation of explanations and predictions,

vVVvy VvVvy VvV VvYVvYyy

exploitation of results taking into account ethical, social, legal, and business
aspects.
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Questions for data scientists

A data scientist can answer a variety of data-driven questions. These
can be grouped into the following four main categories:

= Reporting — What happened?

= Diagnosis — Why did it happen?

= Prediction — What will happen?

= Recommendation — What is the best that can happen?
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Process Mining

Process Science

Process science is an umbrella
term for the broader discipline
that combines knowledge from
information technology and
knowledge from management
sciences to improve and run
operational processes
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The goal of process mining is to use event data to extract

process-related information, e.g., to automatically discover a process
model by observing events recorded by some enterprise system
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Models and Reality

Models are abstractions and languages are needed to express them.
Many different notations to express models and run related activities:

® Formal vs. Informal Notations
= PN, BPMN, UML Activity, EPC, ...
But

= Executable models may be used to force people to work in a
particular manner

= However, most models are not well-aligned (or time passing get
misaligned) with reality

= Most hand-made models are disconnected from reality and
provide only an idealized view on the processes at hand: “paper
tigers”
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Example — PN vs. BPMN
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e S
PAIS ,

Process-Aware Information Systems

software systems that support processes and not just isolated
activities. For example, ERP (En- terprise Resource Planning)
systems (SAP, Oracle, etc.), BPM (Business Pro- cess Management)
systems (Pegasystems, Bizagi, Appian, IBM BPM, etc.), WFM
(Workflow Management) systems, CRM (Customer Relationship Man-
agement) systems, rule-based systems, call center software, high-end
middleware (WebSphere), etc. There is a process notion present in the
software (e.g., the completion of one activity triggers another activity)
and that the information system is aware of the processes it supports
(e.g., collecting information about flow times).

A particular class of PAISs is formed by generic systems that are
driven by explicit process models. Changing the model corresponds (in
theory) to automatically changing the process.

v
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What are process models used for?

Process Models are defined and used for several reasons:

insight: while making a model, the modeler is triggered to view the process from
various angles;

B discussion: the stakeholders use models to structure discussions;

B documentation: processes are documented for instructing people or certification

purposes (cf. ISO 9000 quality management);

verification: process models are analyzed to find errors in systems or
procedures (e.g., potential deadlocks);

performance analysis: techniques like simulation can be used to understand the
factors influencing response times, service levels, etc.;

animation: models enable end users to “play out” different scenarios and thus
provide feedback to the designer;

specification: models can be used to describe a PAIS before it is implemented
and can hence serve as a “contract” between the developer and the end
user/management; and

configuration: models can be used to configure a system.
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Process Mining - flavours and ingredients

Opportunity

Given (a) the interest in process models, (b) the abundance of event data, and (c) the limited
quality of hand-made models, it seems worthwhile to relate event data to process models
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Perspectives

= The control-flow perspective focuses on the control-flow, i.e., the
ordering of activities.

= The organizational perspective focuses on information about
resources hidden in the log, i.e., which actors (e.g., people,
systems, roles, and departments) are involved and how are they
related.

= The case perspective focuses on properties of cases, e.g., cases
can also be characterized by the values of the corresponding data
elements.

= The time perspective is concerned with the timing and frequency
of events.
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Starting point: the event Log
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Starting point: data preparation and transfor-

mation
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From events log to process models e

The problem of automatically infering a model from observed data is
an old one

= |n the formal language area is referred as Grammar inference

= We do not reinvent the wheel: the a-algorithm has been the
starting point for many other techniques

‘C = {<a? b7 d? e’ h>’ <a7 d? b7 e7 h>}
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More traces '

case id trace
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Does the previous model fits wrt the Event log?
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More traces

case id trace
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Mining techniques phenomenons

Let’s consider additional traces that could be observed: (a, b, e, g),
(a,d,c,e f,d,cef b,d eh),(acdefb,d g)arethem permitted
by the model? How can we judge the quality of the model then?
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Extensions

The event log can be used to
discover roles in the organization

(e.g., groups of people with similar

work patterns). These roles can be Performance information (e.

used to relate individuals and average time between two

activities. subsequent activities) can be
extracted from the event log and
visualized on top of the model.

Role A:
Assistant

Decision rules (e.g., a decision tree
based on data known at the time a
particular choice was made) can be
learned from the event log and used
to annotated decisions.
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Play-out ’

key elements of process mining is the emphasis on establishing a
strong relation between a process model and the “reality” captured in

the form of an event log.
Play-Out

-~

process model
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Given a model iti is possible to generate behaviour. The traces are
obtained by repeatedly “playing the token game”. Simulation tools also
use a Play-Out engine to conduct experiments. Also classical
verification approaches using exhaustive state-space analysis can be
seen as Play-Out methods.
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Play-in

Play-In
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example behavior is taken as input and the goal is to construct a
model. Play-In is often referred to as inference.
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Replay

Replay
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Replay

uses an event log and a process model as input. The event log is “re-
played” on top of the process model. An event log may be replayed for
different purposes:

» Conformance checking

» Extending the model with frequencies and temporal information
» Constructing predictive models

» Operational support
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