
Advanced Process Discovery Techniques

Barbara Re

Process Mining

1 / 47



Four Competing Quality Criteria

2 / 47



Quality Dinensions

3 / 47



Fitness

A model has a perfect fitness if all traces in the log can be replayed by the model from
beginning to end

There are various ways of defining fitness.
� It can be defined at the case level, e.g., the fraction of traces in the log that can

be fully replayed.
� It can also be defined at the event level, e.g., the fraction of events in the log that

are indeed possible according to the model.

4 / 47



Simplicity

The simplicity dimension refers to Occam’s Razor. In the context of process discovery
this means that the simplest model that can explain the behavior seen in the log, is the

best model.

The principle states that one should not increase, beyond what is necessary, the number
of entities required to explain anything, i.e., one should look for the simplest model that
can explain what is observed in the data set. This principle is related to finding a natural

balance between overfitting and underfitting.

� The complexity of the model could be defined by the number of nodes and arcs in
the underlying graph

� Also more sophisticated metrics can be used, e.g., metrics that take the
structuredness or entropy of the model into account.

5 / 47



Simplicity

Fitness and simplicity alone are not adequate!

The flower Petri net allows for any sequence starting with start and ending with end and
containing any ordering of activities in between

This model allows for all event logs used to introduce the α-algorithm., the added start
and end activities are just a technicality to turn the flower model into a WF-net 6 / 47



From flower model to enumerating model

The flower model does not contain any knowledge other than the activities in the log

The flower model can be constructed based on the occurrences of activities only, and the
resulting model is simple and has a perfect fitness

Considering fitness and simplicity the flower model is acceptable, this shows that they
are necessary, but not sufficient

If the flower model is on one end of the spectrum, then the enumerating model is on the
other end of the spectrum

The enumerating model of a log simply lists all the sequences possible, i.e., there is a
separate sequential process fragment for each trace in the model

� At the start there is one big XOR split selecting one of the sequences and at the
end these sequences are joined using one big XOR join

� If such a model is represented by a Petri net and all traces are unique, then the
number of transitions is equal to the number of events in the log.

The enumerating model is simply an encoding of the log. Such a model is complex but,
like the flower model, has a perfect fitness.

7 / 47



From flower model to enumerating model

Extreme models:
� the flower model (anything is possible)
� the enumerating model (only the log is possible)

show the need for two additional dimensions!!

8 / 47



Precision and Generalization

A model is precise if it does not allow for too much behavior
� The flower model lacks precision
� A model that is not precise is underfitting
� Underfitting is the problem that the model over-generalizes the example behavior

in the log, i.e., the model allows for behaviors very different from what was seen in
the log.

A model should generalize and not restrict behavior
� The enumerating model lacks generalization
� A model that does not generalize is overfitting
� Overfitting is the problem that a very specific model is generated whereas it is

obvious that the log only holds example behavior, i.e., the model explains the
particular sample log, but a next sample log of the same process may produce a
completely different process model.

Process mining algorithms need to strike a balance between overfitting and
underfitting

9 / 47



Four alternative models for the same log

10 / 47



Characteristics of Process Discovery Alghoritms

� Representational Bias
� Inability to represent concurrency
� Inability to deal with (arbitrary) loops
� Inability to represent silent actions
� Inability to represent duplicate actions
� Inability to model OR-splits/joins
� Inability to represent non-free-choice behavior
� Inability to represent hierarchy

� Ability to Deal With Noise
� Completeness Notion Assumed
� Approach Used

� Direct Algorithmic Approaches
� Two-Phase Approaches
� Divide-and-Conquer Approaches
� Computational Intelligence Approaches
� Partial Approaches

11 / 47



Heuristic Mining

12 / 47



Dependency Graph

Dependency graphs are very important to get the causal structure of a
process model, it is often used as input for all kind of algorithms that look
for more refined representations

� Node correspond to activities
� Arcs correspond to casual dependencies and can be annotated with
number

It has no executable semantics! Dependency graphs have a fuzzy semantics

A Petri net can be translated into a dependency graph considering the
arrows in the footprint, so removing places, but we lose lots of the
semantics

13 / 47



C-Nets

C-nets take these dependency graphs and add a bit more semantics

Causal net is a graph where nodes represent activities and arcs represent causal
dependencies. Each activity has a set of input bindings and a set of output bindings.
There are no places in the causal net and the routing logic is solely represented by
the possible input and output bindings.

Obligations are like tokens and they need to be there in order to be consumed by input
binding

14 / 47



Why C-nets?

� Many of the process mining algorithms that can deal with noise and other
advanced concepts, they use a representation very similar to C-nets. And the
primary example that we will use here is the heuristics miner.

� It fits very well with mainstream languages. They often talk about OR and AND
in a more elaborate way than what is possible in Petri net model or a transition
system, so there is a nice fit.

� Able to model XOR’s, AND’s, and very important OR’s but we do so without
adding any other modelling elements like silent or duplicate transitions in a Petri
net.

� C-net avoid non-sound models. So the semantics are in such a way that we avoid
having deadlocks in them.

15 / 47



Rules of Game - One Possible Execution

16 / 47



Possible Bindings - Possible Traces

Activity x has two input bindings and three output bindings and one possible execution
of this activity x is highlighted here in red. That we have an input binding involving two,
earlier activities and, so, there need to be two, obligations from before. Before we can
do x. And x is creating two obligations into the future.

How many bindings involving this activity are possible?

6 possible bindings!

17 / 47



Possible Bindings - Possible Traces

Activity x has two input bindings and three output bindings and one possible execution
of this activity x is highlighted here in red. That we have an input binding involving two,
earlier activities and, so, there need to be two, obligations from before. Before we can
do x. And x is creating two obligations into the future.

How many bindings involving this activity are possible?

6 possible bindings!
18 / 47



C-net to WF-Net

If we take a C-net, we can easily translate it into a Petri net that allows for
the behavior that we see in the C-net

� We just take all the output bindings and convert them into silent
transitions

� We take all the input bindings, and create them, we create also silent
transitions for them

� We connect where the arcs are, we add places connecting the output
bindings of one transition to the input binding of another transition

19 / 47



How do WF-Net and C-nets relate to each other?

Every valid binding sequence of the C-net corresponds to a firing se-
quence of the workflow net that goes from the initial marking to the
final marking, we can call this a valid firing sequence

In the workflow net there may be many executions that do not correspond
to a valid binding sequence, because they end up in a deadlock or unable to
reach the final state.

� when we talk about C-nets, we only consider valid binding sequences
� hen we talk about workflow nets, we also are confronted with
deadlocks and livelocks that need to be considered

20 / 47



Learning the Dependency Graph

21 / 47



Applying Alpha Algoritm - Is not suitable!!!

22 / 47



Learning the Dependency Graph

23 / 47



Frequency of the directly follows

24 / 47



Dependency measures

� If the number is close to one, there is a very strong causality
� If the number is negative or if the number is close to zero there is a weak casuality

in that direction

We can assume threshold on the number

25 / 47



Dependency measures

By playing with thresholds we can make the dependency graph simpler.
26 / 47



So, what is the algorihm?

� First we set the thresholds
� ... then we count direct successions
� ... then we compute the dependency measures using the two formulas
discussed

� ... then we draw the dependency graph, including only the arcs that
meet both thresholds

� ... then we get the dependency graph

27 / 47



Learning Splits and Joins

28 / 47



Approaches

� Heuristic using a time window before and after each activity. By
counting sets of input and output activities the binding can be
determined (local decision).

� Optimisation approaches based on reply. Given a set of possible input
and output binding one can see whether reality can be replayed
properly. The set of possible input and output binding is finite, so a
best set of bindings can be determined using some goal function.

Many variations are possible!

29 / 47



Approach 1: Based on heuristics

� Activities have possible inputs and outputs (based on dependency
graph)

� Count how often they appear in a windows before (for input binding)
and a window after (for output binding)

30 / 47



Windows size 4 - Example 1

31 / 47



Adding bindings and frequencies - Example 1

32 / 47



Adding bindings and frequencies - Example 2

33 / 47



Adding bindings and frequencies - Example 3

34 / 47



Refinements needed!

� What if there are no corresponding activities in the input or output
windows?

� Noise filtering (remove infrequent bindings)
� Handling repeating activities (e.g. cut off windows size)

35 / 47



Approach 2: Optimisation problem

� Evaluate all possible activity bindings and take best one
� Based on the idea that ideally a trace can be replayed from the initial
state to the final state

� This can be checked precisely using various replay approach
� One can use approach that simply try bindings exhaustively (evaluate
and take the best one

36 / 47



Example: sets of input and output bindings

� Each input output arc needs to be involved in at least one binding.
� For arch activity select one of the input-output binding combination
� One can do this exhaustively and try all combinations
� Evaluation can be done using replay
� Take best one (taking into account fitness. precision, generalisation
and simplicity

37 / 47



IF too time consuming, ...

� Randomize
� Use a genetic algorithm

38 / 47



Genetic Process Mining

39 / 47



Approach used for genetic process mining

40 / 47



Approach used for genetic process mining

� Representation of individuals. Each individual corresponds to a process
model described in a particular language, e.g., Petri nets, C-nets,
BPMN, or EPCs.

� Fitness function. Here, the challenge is to define a function that
balances the four competing quality criteria

� Selection strategy (tournament and elitism). The genetic algorithm
needs to de- termine the fraction of individuals that go to the next
round without any changes

� Crossover. The goal of crossover is to recombine existing genetic
material. The basic idea is to create a new process model that uses
parts of its two parent models.

� Mutation. The goal of mutation is to randomly insert new genetic
material.

41 / 47



Crossover

Two parent models (top) and two child models resulting from a crossover.
The crossover points are indicated by the dashed lines

42 / 47



Mutation

Mutation: a place is removed and an arc is added

43 / 47


	Introduction

