
Process Discovery: An Introduction

Based on an event log a process model is constructed capturing the behavior in the log

Barbara Re

Process Mining

1 / 40

Problem Statement

2 / 40

Focusing on discovery the control-flow perspective

Definition (General process discovery problem)
Let L be an event log. A process discovery algorithm is a function that maps L onto a
process model such that the model is representative for the behavior seen in the event
log. The challenge is to find such an algorithm.

This definition does not specify what kind of process model should be generated, e.g., a
BPMN, EPC, YAWL, or Petri net model

To make things more concrete:
� We define the target to be a Petri net model
� We use a simple event log as input

A simple event log L is a multi-set of traces over A , i.e., L P BpA˚q
L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

The goal is to discover a Petri Net that can replay event log L1
—> Ideally, the Petri Net is a sound WF-Net

3 / 40

Process discovery algorithm

Definition (Specific process discovery problem)
A process discovery algorithm is a function γ that maps a log L P BpA˚q onto a marked
Petri net γpLq “ pN ,Mq. Ideally, N is a sound WF-Net and all traces in L correspond
to possible firing sequences of pN ,Mq.

Function γ defines a so-called Play-In technique

Based on L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys, a process discovery algorithm γ
could discover the following WF-Net

It is easy to see that the WF-Net can indeed replay all traces in the event log
4 / 40

Discovery into practice

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

L2 is a simple event log consisting of 13 cases represented by 6 different traces

Based on event log L2, let’s discover the following WF-Net!!!

This WF-Net can indeed replay all traces in the log

Not all firing sequences of N2 correspond to traces in L2, (e.g. the firing sequence
xa, c, b, e, f , c, b, dy is a firing sequence that is not in the L2 traces

5 / 40

Discovered net are sound WF-Nets

WF-Nets are a natural subclass of Petri nets tailored toward the modeling and analysis
of operational processes

A process model describes the life-cycle of one case

WF-Nets explicitly model the creation and the completion of the cases:
� The creation is modeled by putting a token in the unique source place i

� The completion is modeled by reaching the state marking the unique sink place o

Given a unique source place i and a unique sink place o, the soundness requirement
follows naturally

WN is sound iff:
� safeness – places cannot hold multiple tokens at the same time
� proper completion – for any marking M P rWN , risy, o PM implies M “ ros

� option to complete – for any marking M P rWN , risy, ros P rWN ,My

� absence of dead parts – (WN , ris) contains no dead transitions (i.e., for any
t P T , there is at least a firing sequence enabling t)

6 / 40

Quality criteria

The discovered model should be representative for the behavior seen in the event log

� Fitness - The discovered model should allow for the behavior seen in the event log
� Precision - The discovered model should not allow for behavior completely

un-related to what was seen in the event log
� Generalization - The discovered model should generalize the example behavior

seen in the event log
� Simplicity - The discovered model should be as simple as possible

The challenge is to balance the four quality criteria is needed

� Precision is related to the notion of underfitting –> A model having a poor
precision is underfitting, i.e., it allows for behavior that is very different from what
was seen in the event log

� Generalization is related to the notion of overfitting –> An overfitting model does
not generalize enough, i.e., it is too specific and too much driven by the event log

A trade-off between trade-off between underfitting and overfitting is obvious
7 / 40

A Simple Algorithm for Process
Discovery

8 / 40

α-algorithm

The α-algorithm focus on control flow such as the ordering of the activities

The α-algorithm is one of the first algorithm suitable to discovery model including
concurrency (e.g. loops, parallel part, choice) while guarantee certain properties

The α-algorithm should not be seen as a very practical mining technique as it has
problems with:

� noise
� infrequent/incomplete behavior
� complex routing constructs

INPUT: a simple event log L over A
OUTPUT: a marked Petri net αpLq “ pN ,Mq

The α-algorithm scans the event log for particular patterns

We distinguish four log-based ordering relations to capture relevant patterns in the log

For any log L over A and x , y P A, x ąL y (direct succession), x ÑL y (casuality), x}Ly
(parallel), x#Ly (choice) i.e., precisely one of these relations holds for any pair of
activities

9 / 40

α-algorithm: ordering relations

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ­ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ­ą y and y ­ą x

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

10 / 40

α-algorithm: ordering relations

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ­ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ­ą y and y ­ą x

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

11 / 40

Ordering relationship and footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

12 / 40

Ordering relationship and footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

13 / 40

Ordering relationship and footprint of L2

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ­ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ­ą y and y ­ą x

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

14 / 40

Ordering relationship and footprint of L3

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ­ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ­ą y and y ­ą x

L3 “
rxa, b, c, d , e, f , b, d , c, e, gy, xa, b, d , c, e, gy2, xa, b, c, d , e, f , b, c, d , e, f , b, d , c, e, gys

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

15 / 40

Ordering relationship and footprint of L4

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ­ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ­ą y and y ­ą x

L4 “ rxa, c, dy45, xb, c, dy42, xa, c, ey38, xb, c, ey22
s

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

16 / 40

Typical process patterns

17 / 40

α-algorithm: footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

Model and event log have the same footprint!

18 / 40

α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

2. TI “ tt P T |DσPLt “ firstpσqu

3. TO “ tt P T |DσPLt “ lastpσqu

4. XL “ tpA,Bq|A Ď TL ^A ­“ H ^ B Ď TL ^ B ­“ H
^@aPA@bPBa ÑL b ^ @a1,a2PAa1#La2 ^ @b1,b2PBb1#Lb2u

5. YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu
6. PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

7. FL “ tpa, ppA,Bqq|pA,Bq P YL ^ a P Au Y tpppA,Bq, bq|pA,Bq P YL ^ b P
Bu Y tpiL, tq|t P TIu Y tpt, oLq|t P TOu

8. αpLq “ pPL, TL,FLq

Do not be scared! :)

19 / 40

α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

20 / 40

α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

21 / 40

α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

22 / 40

Place p(A,B) connects the transitions in set A to
the transitions in set B

4. Calculate pairs (A, B)
XL “ tpA,Bq|A Ď TL ^A ­“ H ^ B Ď TL ^ B ­“ H

^@aPA@bPBa ÑL b
^@a1,a2PAa1#La2

^@b1,b2PBb1#Lb2u

5. Delete non maximal pairs (A, B)
YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu
6. Determine place ppA,Bq from pairs (A, B)
PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

23 / 40

4. Calculate pairs (A, B)

4. Calculate pairs (A, B)
XL “ tpA,Bq|A Ď TL ^A ­“ H ^ B Ď TL ^ B ­“ H

^@aPA@bPBa ÑL b
^@a1,a2PAa1#La2

^@b1,b2PBb1#Lb2u

We have to find two sets of activities, A and B, and these activities should have the
following properties.

� If we take any activity in the set A and we take any activity in the set B, there
should always be a direct succession between these two activities. So there should
be at least one position in the log where the element of A is followed by the
element of B and that should hold for all combinations.

� If I take two activities in the set A, they should never follow one another. If I take
two activities in the set B, they should also never follow one another. Even if we
take the same activity, it should never follow itself.

24 / 40

How to identify pA,Bq P XL?

Loking at the footprint matrix we can recognize this structure because we are looking for
a set a and b where things never follow one another. And we are looking for these other
connections where any element of a is directly followed by any element of b, but never
the other way around.

25 / 40

5. Delete non maximal pairs (A, B)

5. Delete non maximal pairs (A, B)
YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu

Delete the element that are contained in others

26 / 40

6. Determine place ppA,Bq from pairs (A, B)

6. Determine place ppA,Bq from pairs (A, B)
PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

All the maximal pairs that we have just discovered in step 5. are places and we add an
initial place iL and a final place oL

27 / 40

Final Steps

7. FL “ tpa, ppA,Bqq|pA,Bq P YL ^ a P AuY
tpppA,Bq, bq|pA,Bq P YL ^ b P BuY
tpiL, tq|t P TIuY

tpt, oLq|t P TOu

We already have the transitions and the places. Here you see the arcs. So here, you can
see all connections from the initial place, I, to all the initial transitions in TI . From all
the transitions in the set TO. So the transitions corresponding to the activities that
happen at the end. And all internal places, and internal places are represented by sets A
and B and the connections are made accordingly.

8. αpLq “ pPL, TL,FLq

28 / 40

α-algorithm application considering L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

29 / 40

α-algorithm application considering L2

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

30 / 40

α-algorithm application considering L3

L3 “
rxa, b, c, d , e, f , b, d , c, e, gy, xa, b, d , c, e, gy2, xa, b, c, d , e, f , b, c, d , e, f , b, d , c, e, gys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

31 / 40

α-algorithm application considering L4

L4 “ rxa, c, dy45, xb, c, dy42, xa, c, ey38, xb, c, ey22
s

TL “

TI “

TO “

XL “

YL “

PL “

FL “

32 / 40

α-algorithm application considering L5

L5 “
rxa, b, e, f y2, xa, b, e, c, d , b, f y3, xa, b, c, e, d , b, f y2, xa, b, e, f y2, xa, b, e, c, d , b, f y3,
xa, b, c, e, d , b, f y2, xa, b, c, d , e, b, f y4, xa, e, b, c, d , b, f y3s

TL “

TI “

TO “

XL “

YL “

PL “

FL “

33 / 40

	Introduction

