
Process Discovery an Introduction

Barbara Re

Process Mining

1 / 65



Problem Statement

2 / 65



Focusing on discovery the control-flow perspective

Definition (General process discovery problem)
Let L be an event log. A process discovery algorithm is a function that maps L onto a
process model such that the model is representative for the behavior seen in the event
log. The challenge is to find such an algorithm.

This definition does not specify what kind of process model should be generated, e.g., a
BPMN, EPC, YAWL, or Petri net model

To make things more concrete:
� We define the target to be a Petri net model
� We use a simple event log as input

A simple event log L is a multi-set of traces over A , i.e., L P BpA˚q
L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

The goal is to discover a Petri Net that can replay event log L1
—> Ideally, the Petri Net is a sound WF-Net

3 / 65



Process discovery algorithm

Definition (Specific process discovery problem)
A process discovery algorithm is a function γ that maps a log L P BpA˚q onto a marked
Petri net γpLq “ pN ,Mq. Ideally, N is a sound WF-Net and all traces in L correspond
to possible firing sequences of pN ,Mq.

Function γ defines a so-called Play-In technique

Based on L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys, a process discovery algorithm γ
could discover the following WF-Net

It is easy to see that the WF-Net can indeed replay all traces in the event log
4 / 65



Discovery into practice

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

L2 is a simple event log consisting of 13 cases represented by 6 different traces

Based on event log L2, let’s discover the following WF-Net!!!

This WF-Net can indeed replay all traces in the log

Not all firing sequences of N2 correspond to traces in L2, (e.g. the firing sequence
xa, c, b, e, f , c, b, dy is a firing sequence that is not in the L2 traces

5 / 65



Discovered net are sound WF-Nets

WF-Nets are a natural subclass of Petri nets tailored toward the modeling and analysis
of operational processes

A process model describes the life-cycle of one case

WF-Nets explicitly model the creation and the completion of the cases:
� The creation is modeled by putting a token in the unique source place i

� The completion is modeled by reaching the state marking the unique sink place o

Given a unique source place i and a unique sink place o, the soundness requirement
follows naturally

WN is sound iff:
� safeness – places cannot hold multiple tokens at the same time
� proper completion – for any marking M P rWN , risy, o PM implies M “ ros

� option to complete – for any marking M P rWN , risy, ros P rWN ,My

� absence of dead parts – (WN , ris) contains no dead transitions (i.e., for any
t P T , there is at least a firing sequence enabling t)

6 / 65



Quality criteria

The discovered model should be representative for the behavior seen in the event log

� Fitness - The discovered model should allow for the behavior seen in the event log
� Precision - The discovered model should not allow for behavior completely

un-related to what was seen in the event log
� Generalization - The discovered model should generalize the example behavior

seen in the event log
� Simplicity - The discovered model should be as simple as possible

The challenge is to balance the four quality criteria is needed

� Precision is related to the notion of underfitting –> A model having a poor
precision is underfitting, i.e., it allows for behavior that is very different from what
was seen in the event log

� Generalization is related to the notion of overfitting –> An overfitting model does
not generalize enough, i.e., it is too specific and too much driven by the event log

A trade-off between trade-off between underfitting and overfitting is obvious
7 / 65



A Simple Algorithm for Process
Discovery

8 / 65



α-algorithm

The α-algorithm focus on control flow such as the ordering of the activities

The α-algorithm is one of the first algorithm suitable to discovery model including
concurrency (e.g. loops, parallel part, choice) while guarantee certain properties

The α-algorithm should not be seen as a very practical mining technique as it has
problems with:

� noise
� infrequent/incomplete behavior
� complex routing constructs

INPUT: a simple event log L over A
OUTPUT: a marked Petri net αpLq “ pN ,Mq

The α-algorithm scans the event log for particular patterns

We distinguish four log-based ordering relations to capture relevant patterns in the log

For any log L over A and x , y P A, x ąL y (direct succession), x ÑL y (casuality), x}Ly
(parallel), x#Ly (choice) i.e., precisely one of these relations holds for any pair of
activities

9 / 65



α-algorithm: ordering relations

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ą y and y ą x

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

10 / 65



α-algorithm: ordering relations

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ą y and y ą x

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

11 / 65



Ordering relationship and footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

12 / 65



Ordering relationship and footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

13 / 65



Ordering relationship and footprint of L2

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ą y and y ą x

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

14 / 65



Ordering relationship and footprint of L3

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ą y and y ą x

L3 “
rxa, b, c, d , e, f , b, d , c, e, gy, xa, b, d , c, e, gy2, xa, b, c, d , e, f , b, c, d , e, f , b, d , c, e, gys

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

15 / 65



Ordering relationship and footprint of L4

� Direct succession: x ą y iff for some case x is directly followed by y

� Causality: x Ñ y iff x ą y and y ą x

� Parallel: x}y iff x ą y and y ą x

� Choice: x#y iff x ą y and y ą x

L4 “ rxa, c, dy45, xb, c, dy42, xa, c, ey38, xb, c, ey22
s

PLEASE DEFINE THE ORDERING RELATIONS

(direct succession) ąL = tp..., ...q, ...u
(casuality) ÑL = tp..., ...q, ...u
(parallel) }L = tp..., ...q, ...u
(choice) #L = tp..., ...q, ...u

PLEASE DEFINE THE FOOTPRINT

16 / 65



Typical process patterns

17 / 65



α-algorithm: footprint of L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

Model and event log have the same footprint!

18 / 65



α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

2. TI “ tt P T |DσPLt “ firstpσqu

3. TO “ tt P T |DσPLt “ lastpσqu

4. XL “ tpA,Bq|A Ď TL ^A “ H ^ B Ď TL ^ B “ H
^@aPA@bPBa ÑL b ^ @a1,a2PAa1#La2 ^ @b1,b2PBb1#Lb2u

5. YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu
6. PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

7. FL “ tpa, ppA,Bqq|pA,Bq P YL ^ a P Au Y tpppA,Bq, bq|pA,Bq P YL ^ b P
Bu Y tpiL, tq|t P TIu Y tpt, oLq|t P TOu

8. αpLq “ pPL, TL,FLq

Do not be scared! :)

19 / 65



α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

20 / 65



α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

21 / 65



α-algorithm

Let L be an event log over T Ď T , than αpLq is defined as follows:

1. TL “ tt P T |DσPLt P σu

TL is the set of activities do appear in the log, these will correspond to the transitions of
the generated WF-Net

2. TI “ tt P T |DσPLt “ firstpσqu

TI is the set of start activities, i.e., all activities that appear first in some trace such as
xt1, ..., tny, ...xt

1
1, ..., t

1
my

3. TO “ tt P T |DσPLt “ lastpσqu

TO is the set of end activities, i.e., all activities that appear last in some trace, such as
xt1, ...tny, ...xt

1
1, ..., t

1
my

22 / 65



Place p(A,B) connects the transitions in set A to
the transitions in set B

4. Calculate pairs (A, B)
XL “ tpA,Bq|A Ď TL ^A “ H ^ B Ď TL ^ B “ H

^@aPA@bPBa ÑL b
^@a1,a2PAa1#La2

^@b1,b2PBb1#Lb2u

5. Delete non maximal pairs (A, B)
YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu
6. Determine place ppA,Bq from pairs (A, B)
PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

23 / 65



4. Calculate pairs (A, B)

4. Calculate pairs (A, B)
XL “ tpA,Bq|A Ď TL ^A “ H ^ B Ď TL ^ B “ H

^@aPA@bPBa ÑL b
^@a1,a2PAa1#La2

^@b1,b2PBb1#Lb2u

We have to find two sets of activities, A and B, and these activities should have the
following properties.

� If we take any activity in the set A and we take any activity in the set B, there
should always be a direct succession between these two activities. So there should
be at least one position in the log where the element of A is followed by the
element of B and that should hold for all combinations.

� If I take two activities in the set A, they should never follow one another. If I take
two activities in the set B, they should also never follow one another. Even if we
take the same activity, it should never follow itself.

24 / 65



How to identify pA,Bq P XL?

Loking at the footprint matrix we can recognize this structure because we are looking for
a set a and b where things never follow one another. And we are looking for these other
connections where any element of a is directly followed by any element of b, but never
the other way around.

25 / 65



5. Delete non maximal pairs (A, B)

5. Delete non maximal pairs (A, B)
YL “ tpA,Bq P XL|@pA1,B1qPXLA Ď A1 ^ B Ď B1 ùñ pA,Bq “ pA1,B1qu

Delete the element that are contained in others

26 / 65



6. Determine place ppA,Bq from pairs (A, B)

6. Determine place ppA,Bq from pairs (A, B)
PL “ tppA,Bq|pA,Bq P YLu Y tiL, oLu

All the maximal pairs that we have just discovered in step 5. are places and we add an
initial place iL and a final place oL

27 / 65



Final Steps

7. FL “ tpa, ppA,Bqq|pA,Bq P YL ^ a P AuY
tpppA,Bq, bq|pA,Bq P YL ^ b P BuY
tpiL, tq|t P TIuY

tpt, oLq|t P TOu

We already have the transitions and the places. Here you see the arcs. So here, you can
see all connections from the initial place, I, to all the initial transitions in TI . From all
the transitions in the set TO. So the transitions corresponding to the activities that
happen at the end. And all internal places, and internal places are represented by sets A
and B and the connections are made accordingly.

8. αpLq “ pPL, TL,FLq

28 / 65



α-algorithm application considering L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

29 / 65



α-algorithm application considering L1

L1 = rxa, b, c, dy3, xa, c, b, dy2, xa, e, dys

TL “ ta, b, c, d , eu
TI “ tau
TO “ tdu
XL “ tptau, tbuq, ptau, tcuq, ptau, teuq, ptau, tb, euq, ptau, tc, euq,

ptbu, tduq, ptcu, tduq, pteu, tduq, ptb, eu, tduq, ptc, eu, tduqu
YL “ tptau, tb, euq, ptau, tc, euqptb, eu, tduq, ptc, eu, tduqu
PL “ tpptau,tb,euq, pptau,tc,euq, pptb,eu,tduq, pptc,eu,tduq, iL, oLu

FL “ tpiL, aq, pa, pptau,tb,euqq, ppptau,tb,euq, bq, ppptau,tb,euq, eq, ..., pd , oLqu

30 / 65



α-algorithm application considering L2

L2 = rxa, b, c, dy3, xa, c, b, dy4, xa, b, c, e, f , b, c, dy2,
xa, b, c, e, f , c, b, dy2, xa, c, b, e, f , b, c, dy2, xa, c, b, e, f , b, c, e, f , c, b, dys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

31 / 65



α-algorithm application considering L3

L3 “
rxa, b, c, d , e, f , b, d , c, e, gy, xa, b, d , c, e, gy2, xa, b, c, d , e, f , b, c, d , e, f , b, d , c, e, gys

TL “

TI “

TO “

XL “

YL “

PL “

FL “

32 / 65



α-algorithm application considering L4

L4 “ rxa, c, dy45, xb, c, dy42, xa, c, ey38, xb, c, ey22
s

TL “

TI “

TO “

XL “

YL “

PL “

FL “

33 / 65



α-algorithm application considering L5

L5 “
rxa, b, e, f y2, xa, b, e, c, d , b, f y3, xa, b, c, e, d , b, f y2, xa, b, e, f y2, xa, b, e, c, d , b, f y3,
xa, b, c, e, d , b, f y2, xa, b, c, d , e, b, f y4, xa, e, b, c, d , b, f y3s

TL “

TI “

TO “

XL “

YL “

PL “

FL “

34 / 65



Limitation of α-algorithm

In what situations doesn’t the α-algorithm produce the result that you expect?

The α-algorithm can discover a large class of WF-nets assuming that the log is
complete with respect to the log-based ordering relation ąL

This assumption implies that, for any complete event log L, a ąL b if a can be directly
followed by b

Even if we assume that the log is complete, the α-algorithm has some problems

There are many different WF-nets that have the same possible behavior, i.e., two models
can be structurally different but trace equivalent

Let’s take a look at some logs that show limitations of the α-algorithm.

35 / 65



Limitation of α-algorithm (implicit places)

L6 “ rxa, c, e, gy2, xa, e, c, gy3, xb, d , f , gy2, xb, f , d , gy4s

The places denoted as p1 and p2 are so-called implicit places and can be removed
without problem, they only complicate matters and don’t add anything

36 / 65



Limitation of α-algorithm (loops of length 1)

L7 “ rxa, cy2, xa, b, cy3, xa, b, b, cy2, xa, b, b, b, b, cy1s
a ą b, a ą c, b ą b, b ą c

a Ñ b, a Ñ c, b Ñ c
b}b

a#a, a#c

Discovered Model Desidered model

The resulting model is not a WF-net as transition b is disconnected from the rest of the
model. The models allows for the execution of b before a and after c. This is not
consistent with the event log.

This problem can be addressed using an improved version of α-algorithm.

37 / 65



Limitation of α-algorithm (loops of length 2)

L8 “ rxa, b, dy3, xa, b, c , b, dy2, xa, b, c , b, c , b, dys
a ą b, b ą c , b ą d , c ą b

aÑ b, b Ñ d
b}c

Discovered Model

Desidered model

The basic algorithm has no problems mining loops of length three or
more!!!

38 / 65



Limitation of α-algorithm (non-local dependencies)

L9 “ rxa, c , dy45, xb, c , ey42s

Discovered Model

The two traces that we see in the log are indeed possible

But we also allow for a trace where we first do b, then c, and then d -
Which was not observed in the log!!!!

39 / 65



Limitation of α-algorithm (non-local dependencies)

L9 “ rxa, c , dy45, xb, c , ey42s

What we would like to discover is this process model

But p1 and p2 are not discovered because a and d and b and e never follow
one another directly, only indirectly.

Such problems can be (partially) resolved using refined versions of the
α-algorithm

40 / 65



Limitation of α-algorithm (non-local dependencies)

L9 “ rxa, c , dy45, xb, c , ey42s

L4 “ rxa, c , dy45, xb, c , dy42, xa, c , ey38, xb, c , ey22s

The problem that we see here is that we have these two event logs are very
different but if we look at the corresponding footprints they are the same

In both cases we produce this model

The resulting model is under fitting, if we look at the first log L9

41 / 65



Difficult constructs for α-algorithm

The non-local dependencies, correspond to so called non-free choice
constructs, situations where there is a mixture of choice and
synchronization

If we have process models where these things happen, the α-algorithm is likely to
produce an incorrect result.

42 / 65



Challenges

43 / 65



Question

L “ rxa, c , dy45, xb, c, ey42, xa, c , ey20s

� What model will the α-algorithm generate?

� What is the model that would actually generate the behavior that you
see in the log and nothing more?

44 / 65



Answer 1 - Model Generated by α-algorithm

L “ rxa, c, dy45, xb, c, ey42, xa, c , ey20s

We see the same problem as before that we don’t see these non-local
dependencies. So, this allows for a trace that was never observed.

45 / 65



Answer 2 - Model that can produce the observed
behaviour and nothing more

L “ rxa, c , dy45, xb, c , ey42, xa, c , ey20s

In the model only the three different types of traces that we see in the log
can be generated by this model. But in the model there are multiple
transitions having the same label. Using the α-algorithm, you could never
discover this model.

46 / 65



Limitation: representational bias

L10 “ rxa, ay55s

We can never discover it because our representation doesn’t allow for the
discovery of a model with multiple transitions having the same label

47 / 65



Another Example

L11 “ rxa, b, cy20, xa, cy30s

it is incorrect because in this model we cannot skip b

Duplicated Transitions

Silent Step via tau transition

Both are possible, but they are not within the representational bias of the
α-algorithm

48 / 65



OR join/split pattern

� Let us take an event log containing all possible full firing sequence and
apply the α-algorithm

� What will happen?

49 / 65



OR join/split pattern

L “ rxa, b, dy, xa, c , dy, xa, b, c, dy, xa, c , b, dys

It is incorrect because b and c are always executed, rather than that they
are optional

50 / 65



Limitation: resulting model does not need to be a
sound WF-net

L11 “ rxa, b, d , e, f y10, xa, c , e, d , f y10s

The dicovered model is not sound!
This is an assumption in the application of α-algorithm

51 / 65



Challenge: Noice and Incompleteness

To discover a suitable process model it is assumed that the event log
contains a representative sample of behavior

� Noise: the event log contains rare and infrequent behaviour not
representative for the typical behaviour of the process

� Incompleteness: the event log contain too few events to be able to
discover some of the underlying control-flow structures

52 / 65



Flower Model

It allow for any behaviour, this is underfitting!

53 / 65



What is the best model?

The first model!

54 / 65



What is the best model?

The first model!

55 / 65



What is the best model?

The second model!

56 / 65



What is the best model?

The second model!

57 / 65



What is the best model?

A more mixed situation, where the traces (a,c,e) and (b,c,d) are infrequent

It is unclear which of the two models we prefer

� The top model describes the dominant behavior, but it does not allow
for some of the infrequent traces that we have seen in the log

� The bottom model capture all behavior, but we would not be able to
distinguish between the highway and the traces that are less frequent

58 / 65



What is the best model?

A more mixed situation, where the traces (a,c,e) and (b,c,d) are infrequent

It is unclear which of the two models we prefer

� The top model describes the dominant behavior, but it does not allow
for some of the infrequent traces that we have seen in the log

� The bottom model capture all behavior, but we would not be able to
distinguish between the highway and the traces that are less frequent

59 / 65



Noice and incompleteness

The α-algorithm cannot deal with noise and incompleteness.

This is also a challenge for many of the other algorithms.

60 / 65



Limitation summing up

� Implicit places (places that are redundant): harmless and be solved
through preprocessing

� Loops of length 1: can be solved in multiple ways (change of
algorithm or pre/post-processing)

� Loops of length 2: idem
� Non local dependencies: foundational problem, not specific for
α-algorithm

� Representation bias (cannot discover transition with duplicate or
invisible labels): other algorithms may have a different bias

� Discovered model does not need to be sound: some algorithm ensure
this

� Noise: foundational problem, not specific for α-algorithm
� Completeness: also foundational problem

61 / 65



Rediscovering Process Models

62 / 65



How to measure the quality of a discovered model?

For the moment, we only mention the rediscovering process model

The rediscovery problem: is the discovered model N’ equivalent to the
original model N?

63 / 65



Taking the Transactional Life-Cycle into
Account

64 / 65



Taking the Transactional Life-Cycle into Account

Mining event logs with transactional information; the life-cycle of each activity is rep-
resented as a subprocess

The α-algorithm can be easily adapted to take this information into account.

65 / 65


	Introduction

