

Understanding Production Chain Business Process using Process Mining: a Case Study in the Manufacturing Scenario

Barbara Re

Computer Science Division

University of Camerino, Camerino, Italy

Motivations

- Changes in business context
 - New market conditions
 - Better lead time
- Manufacturing characterized by complex production processes
- Company forced to continuous improvements to advance
- Better understanding of the actual production processes

Process mining provides appropriate techniques

Overall Approach

Process Mining Algorithm

Several Algorithms are available

- α-algorithm
- Fuzzy Miner

- HeuristicsMiner (HM)
- Integer Linear Programming (ILP) Miner
- Inductive Miner (IM)
- Evolutionary Tree Miner (ETM)

Why such algorithms? (I)

- ILP, HM and Genetic Miner have good performance especially with real-life logs¹
- ETM is the natural progression of the Genetic Miner
- IM is newer than¹, but it outperforms the other three algorithms²
- α-algorithm is the reference for the minimum level of performance

¹ De Weerdt, J. et al., 2012. A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. *Information Systems*, 37(7), pp.654–676.

² Leemans, S.J.J., Fahland, D. & van der Aalst, W.M.P., 2014. Discovering block-structured process models from event logs containing infrequent behaviour. In N. Lohmann, M. Song, & P. Wohed, eds. *Lecture Notes in Business Information Processing*. Springer International Publishing, pp. 66–78.

Why such algorithms? (II)

- Algorithms are public available (in ProM 6.5)
- The results may be transformed in BPMN
 - Ensures an unambiguous comparison
 - Only exception is the Fuzzy Miner

- It returns a fuzzy model that is not a formalism to represent BP
- Discovered models provide an overall behavior with understandable and high-level information

Case study: a coffee machine company

- Produces professional coffee machines
- The main business is the assembling
 - Only a small portion of the components is made internally
- Production is shared on 6 production lines identified by numbers (1..6)
- Each production line is divided into stations, identified by the letters A to F, with clear tasks
 - Lines from I to 4 have six stations
 - Lines 5 and 6 have only five stations
- Production lines, and related stations, are managed by a customized PAIS named ASCCO

Process mining into practice

- Available more than 450000 event logs
 - 6 years of production
 - related to the manufacturing of 32 different coffee machine
- Logs stored in a relational DB
- Process mining performed with ProM 6.5 framework
- Logs are converted in Extensible Event Stream (XES)¹ format
- Mining algorithm are applied to all 32 sets of log
- Discovered process models are converted to BPMN

¹ Günther, C.W.& Verbeek, E., 2014. XES Standard Definition ver. 2.0

Discovered BP models for coffee machine

Some Conclusions about discovered models

- BP models discovered with α-algorithm or ILP are not meaningful for most of the models of coffee machines
 - Confused models
 - Difficult to obtain useful information
- Fuzzy miner is suitable in modelling manufacturing processes
 - Understandable discovered models
 - Activities are highly connected
- HM, IM and ETM return very comprehensible models
- ETM requires several minutes to discover a BP model while other algorithms complete in few seconds

A BP model may be evaluated according to four quality dimensions:

- Replay fitness expresses the portion of the log behavior that can be replayed by the process model
- Precision is the measure of the level of underfitting
- Generalization is the measure of overfitting
- Simplicity evaluates how easily a human interprets the process model

van der Aalst, W.M.P., 2011. Process Mining: Discovery, Conformance and Enhancement of Business Processes, Springer Berlin Heidelberg

Complexity metrics for an objective evaluation of Simplicity

- Size: number of nodes of the model
- Density (Δ): [total number of arcs]/[max number of arcs for the same number of nodes]
- CNC: arcs/nodes
- ACD: number of nodes a connector is in average connected to
- MM: sum of mismatches for each connector type
- CFC: sum over all connectors weighted by their potential combinations of states after a split

Mendling, J., 2008. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness, Springer Publishing Company

Discovered BP models evaluation (I)

Discovered BP models evaluation (II)

-		Fitness	Precision	Generalization	Size	Δ	CNC	ACD	MM	CFC
7	α	0.5642	0	0	10	0.189	1.7	4.5	7	4
	HM	0.4545	0	0	9	0.139	1.111	3	2	2
	ILP	0.628	0	0	11	0.155	I.545	4.33	6	4
	IM	0.9998	0.947	0.866	10	0.122	1.1	4	0	1
	ETM	0.9985	1	0.987	8	0.125	0.875	0	0	0
8	α	0.7143	0.875	0.854	11	0.109	1.091	3	2	2
	HM	0.9985	0.922	0.901	10	0.122	1.1	3	4	4
	ILP	1	0.944	0.493	11	0.109	1.091	3	2	1
	IM	1	0.944	0.493	11	0.109	1.091	3	2	I
	ETM	0.9973	I	0.933	8	0.125	0.875	0	0	0
12	α	0.5644	0	0	9	0.222	1.778	5	4	1
	HM	0.9988	0.944	0.956	9	0.125	I	3	2	2
	ILP	0.4851	0	0	13	0.115	I.385	3.4	2	5
	IM	0.9983	I	0.964	8	0.125	0.875	0	0	0
	ETM	0.9984	0.885	0.965	9	0.125	1	3	2	2
16	α	0.2857	I	0.9	14	0.093	1.214	3.17	13	5
	HM	0.9995	1	0.9	8	0.125	0.875	0	0	0
	ILP	0.6323	0	0	11	0.127	1.273	3.33	1	1
	IM	0.9995	1	0.9	8	0.125	0.875	0	0	0
	ETM	1	0.772	0.35	10	0.122	1.1	4	0	1
19	α	0.7966	0	0	10	0.133	1.2	3	2	3
	HM	0.9986	0.848	0.84	9	0.139	1.1111	3	4	4
	ILP	1	0.883	0.458	9	0.139	1.1111	3.5	I	1
	IM	1	0.883	0.458	9	0.139	1.1111	4	0	1
	ETM	1	0.883	0.458	10	0.122	1.1	3.33	I	I
29	α	0.4918	0	0	8	0.269	I.875	6	5	I
	HM	0.9968	I	0.667	7	0.143	0.857	0	0	0
	ILP	0.4384	0	0	8	0.161	1.125	3	2	0
	IM	0.9996	I	0.4	8	0.143	1	3	2	0
	ETM	0.9968	I	0.667	7	0.143	0.857	0	0	0

Discovered BP models evaluation (III)

- α-algorithm and ILP have a good performance in a small number of data variations
 - Underperform in all quality dimensions
 - Show significantly high complexity measures
- IM and ETM have best performance on all the logs
 - Highest values of fitness and precision for each log
 - "Good" values of complexity

Discovered BP models evaluation (IV)

- Also HM has good performance
 - High fitness and precision
 - Complexity comparable to IM and ETM
 - The only exception is for log set 7
- Results do not show specific relationship between complexity and quality measures
- IM is preferred over ETM due to its performance

Conclusion and Future Work

- Results have been used for further analysis
- Deviated traces depend on:
 - Run-time errors of PAIS (only a small portion)
 - Incorrect procedures for fixing/replacing faulty components
 - Implementation of some special customizations
- New process awareness drove the company to reorganize production
- Integrating Process Mining in ASCCO

Thanks!!!

Alessandro Bettacchi alessandro.bettacchi@unicam.it