

## 7. Evidence: Data Collection and Analysis

Knut Hinkelmann





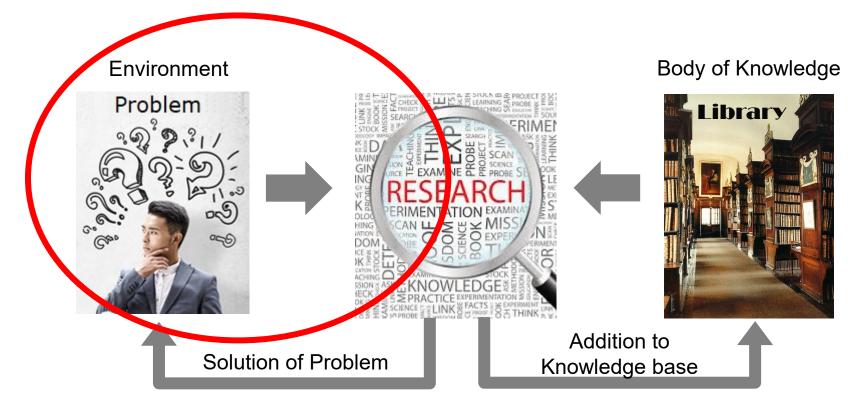
- In an academic work you need to convince readers that your point of view is correct.
- The only way to do this is to offer credible *evidence*, clearly substantiating the point you are trying to make.
- Evidence is needed whenever you make an assertion or claim that is not self-evidently true to the average reader in your field.
- Evidence is the foundation of any academic argument. Without evidence you don't have an argument in academic terms – all you have is an opinion.



(Hofstee 2006, pp. 146ff)



## Types of Evidence – Appropriate Use of Reseach Method


- Your concrete research usually is made up of different types of evidence
- Your research method determines what type of evidence you will mainly rely on.
- Evidence from Knowledge Base
  - quotes from literature
- Data collected from Environment
  - Quantitative vs. Qualitative
  - Primary vs secondary



(Hofstee 2006, pp. 146ff)



#### With data you analyse your environment (application domain)



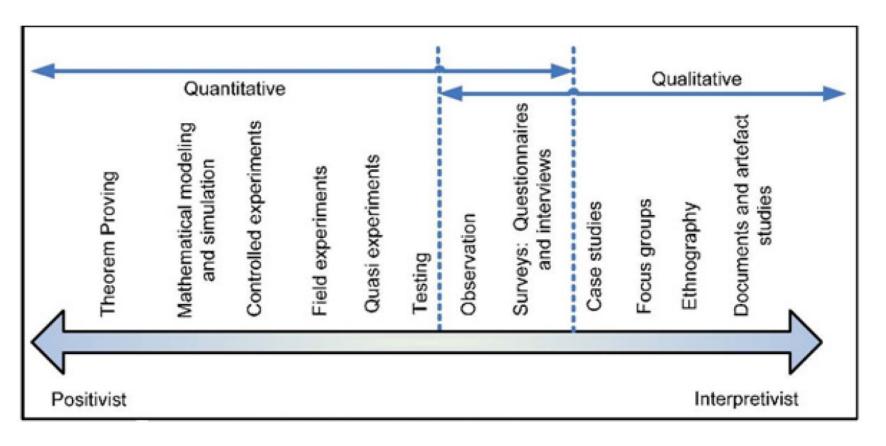
# <sup>336</sup> Evidence is based on Data and Analysis

- Your research provides you with relevant facts or data that you can analyse and use as evidence to prove your thesis statement (resp. answer your research question)
- If you want your readers to accept or even consider your argument, you need
  - the data to substantiate your point and
  - provide analysis and argumentation that gives meaning to the data





- Primary sources are the *thing* that you are investigating. They have not been analysed or interpreted by someone else.
- Types of data collection examples:
  - Measuring (e.g. process performance, performance of an algorithm)
  - Looking into company records (e.g. databases, event logs)
  - Data from sensors
  - Setting up an experiment
  - Observations
  - Interviewing people
  - Questionnaires
  - Workshops, focus groups
- Primary data is considered stronger than secondary data.




- Secondary sources pertain to what you are investigating, but are based on primary data that someone else has interpreted or analysed.
- Examples:
  - Studies, surveys and statistics
  - Measurements published in literature





#### Research Strategies, Choices and Philosophy

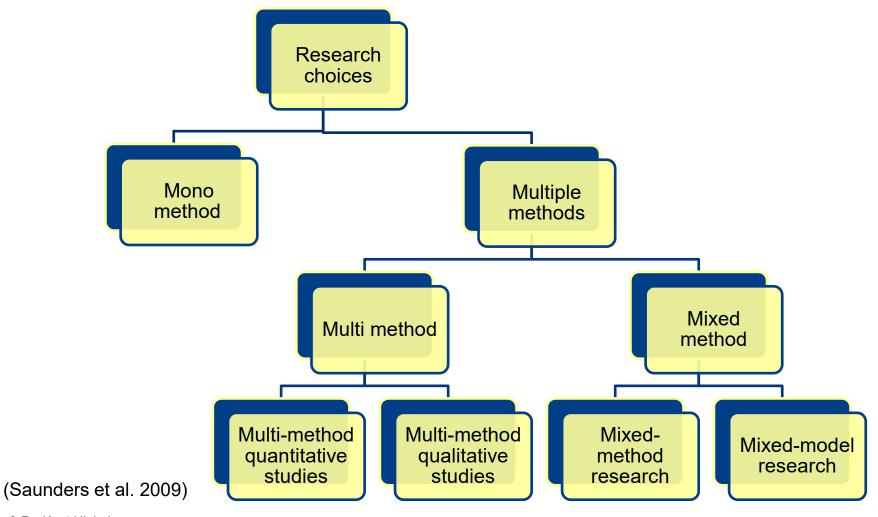


(De Villiers 2005)





#### Quantitative research:


 focuses on verifying hypotheses (deductive) or finding patterns (inductive) using typically *large amounts of data*

#### Qualitative research:

- focuses on understanding the important characteristics of typically small samples of data
- **Example:** investigate users' response to an interface
  - quantitative approach: collect ratings, verify user acceptance, sensor data, test results,
  - qualitative approach: understand *why* users interact with the interface in certain ways







Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

**Research Methods** 



# Evidence Depends on the Quality of Data and the Appropriate Use of it

- All data and facts can be used as evidence for something, and they can be used effectively or ineffectively.
- After you have established what type of evidence is appropriate to your dissertation, it is up to you to make sure that the evidence you present is both
  - of sufficient quality and
  - used appropriately





«Of sufficient quality» means that …

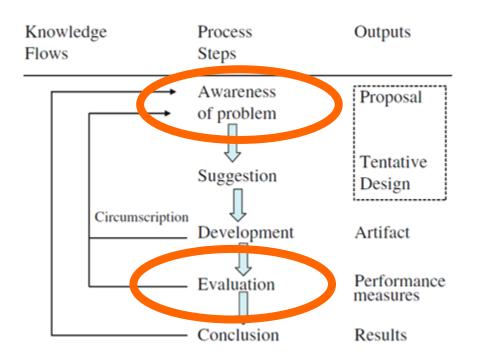
- ... the data is realiable,
- ... there is enough of it,
- ... it pertains directly to your point, and
- ... it is current

(i.e. it must not have been superseded by later evidence that has established the earlier work to be inapplicable or flawed)





# The quality of your data will determine the quality of your dissertation ..




Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch

**Research Methods** 

## Evidence in Design Science Research

In Design research evidence from data is particularly used for problem understanding and artefact evaluation



#### Awareness of the Problem:

- Based on the collected data, a design researcher designs an artifact that provides utility
- In addition the researcher has to provide evidence that this artifact solves a real problem.

#### **Evaluation:**

• To provide evidence, it has to be examined whether the artifact meets the requirements.

(Hevner & Chatterjee 2010, p. 110/122)

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch



## Sources of Evidence





### Collecting Data from Documents and Databases

| Source of Evidence                                                                    | Strengths                                                                                                                                                                                                                                                                            | Weaknesses                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Documentation<br>Project reports,<br>emails, meeting<br>minutes, progress<br>reports, | <ul> <li>Stable—can be reviewed repeatedly</li> <li>Unobtrusive—not created as a result of the case study</li> <li>Specific—can contain the exact names, references, and details of an event</li> <li>Broad—can cover a long span of time, many events, and many settings</li> </ul> | <ul> <li>Retrievability—can be difficult to find</li> <li>Biased selectivity, if collection is incomplete</li> <li>Reporting bias—reflects (unknown) bias of any given document's author</li> <li>Access—may be deliberately withheld</li> </ul> |
| Archival records<br>Statistics, finance<br>sheets, budgets,<br>personnel records,     | <ul> <li>[Same as those for documentation]</li> <li>Precise and usually quantitative</li> </ul>                                                                                                                                                                                      | <ul> <li>[Same as those for documentation]</li> <li>Accessibility due to privacy reasons</li> </ul>                                                                                                                                              |





- One of the most important sources of evidence for case studies
- Tend to adopt semi-structured designs
- There are many different types of interview styles you need to identify the correct one for your study
- Interviewees can have different levels of engagement in the interview
- Thinking about how to record and process interview data is important





| Source of Evidence | Strengths                                                                                                                                                                                                 | Weaknesses                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interviews         | <ul> <li>Targeted—can focus directly<br/>on case study topics</li> <li>Insightful—provides<br/>explanations as well<br/>as personal views (e.g.,<br/>perceptions, attitudes, and<br/>meanings)</li> </ul> | <ul> <li>Bias due to poorly articulated questions</li> <li>Response bias</li> <li>Inaccuracies due to poor recall</li> <li>Reflexivity—e.g., interviewee says what interviewer wants to hear</li> </ul> |





### Focus Group – Group Interview



- A focus group is a moderated discussion among 6–12 people who discuss a topic under the direction of a moderator
- The focus group technique is useful as an
  - exploratory method when little is known about the phenomenon (e.g. problem understanding, identify needs and requirements)
  - as a confirmatory method to test hypotheses or to evaluate a design





| Source of Evidence          | Strengths                                                                                                                       | Weaknesses                                                                                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direct<br>observations      | <ul> <li>Immediacy–covers actions in real time</li> <li>Contextual–can cover the case's context</li> </ul>                      | <ul> <li>Time-consuming</li> <li>Selectivity—broad coverage difficult<br/>without a team of observers</li> <li>Reflexivity—actions may proceed<br/>differently because participants<br/>know they are being observed</li> <li>Cost—hours needed by human<br/>observers</li> </ul> |
| Participant-<br>observation | <ul> <li>[Same as above for direct<br/>observations]</li> <li>Insightful into interpersonal<br/>behavior and motives</li> </ul> | <ul> <li>[Same as above for direct<br/>observations]</li> <li>Bias due to participant-observer's<br/>manipulation of events</li> </ul>                                                                                                                                            |



#### Data from Physical Artefacts

| Source of Evidence                                                          | Strengths                                                                                                   | Weaknesses                                            |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Physical artifacts<br>Technical devices,<br>tools, instruments,<br>sensors, | <ul> <li>Insightful into cultural<br/>features</li> <li>Insightful into technical<br/>operations</li> </ul> | <ul> <li>Selectivity</li> <li>Availability</li> </ul> |



(Yin 2018)



## Data Analysis





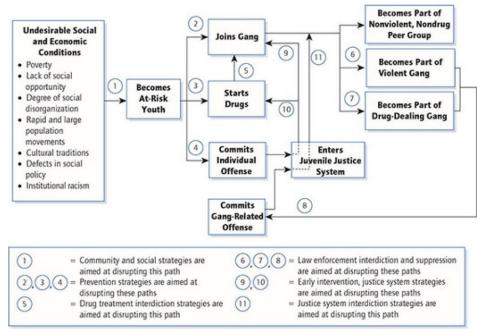
## Analytical Techniques for Qualitative Case Studies

#### Pattern Matching

 Compare the empirical patterns (findings based on your data) to a prior predicted pattern (or several) established before the data collection, e.g. a theory found in literature (confirmation, replication) \*)

#### Explanation Building

- Building an explanation about "how" or "why" some outcome has occurred; typically takes a narrative form
- Time Series Analysis
  - Track a phenomenon over time to identify how changes take place


#### Logical Models

 Stipulate a complex chain of events tat occurred over an extended period of time in cause-effect-cause-effect patterns; can be represented graphically

\*) See section 2 – Research contribution Dr. Knut Hinkelmann (Yin 2018)



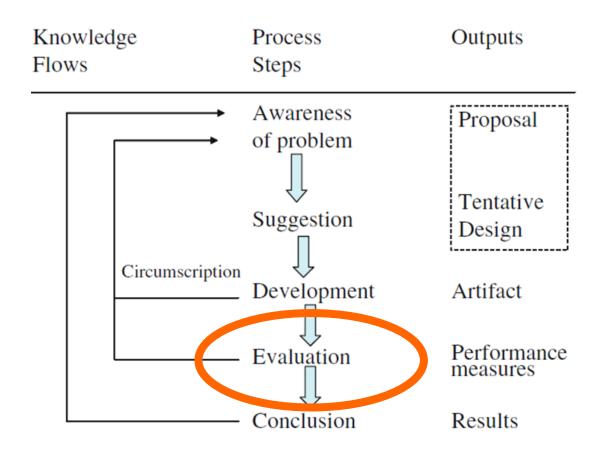
### Examples of Logical Models



This logical model from (Yin 2018) shows youth behaviour and possible interventions

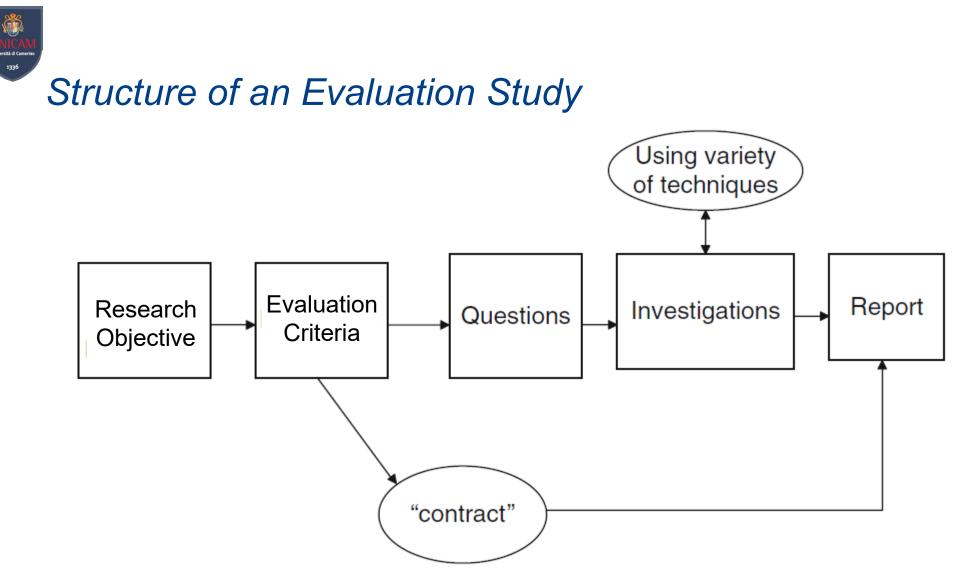
- Logical Models are often used in information systems to represent
  - Behaviour (e.g. process models)
  - Conceptual Models (e.g. class diagrams)
  - Interactions (e.g. use case diagrams)
  - Cause-effect relationships (e.g. state transition diagrams)

Prof. Dr. Knut Hinkelmann knut.hinkelmann@fhnw.ch




# Evaluation: Evidence for Design Research






## **Evaluation in Design Science Research**



- To provide evidence, it has to be examined whether the artifact meets the requirements. This is done in the **evaluation phase**.
- Evidence-based artifact evaluation requires that the artifact is evaluated within the business environment.
- A design science paper with no evaluation is least likely to be accepted for a conference or journal

(Hevner & Chatterjee 2010, p. 27/122)




Evaluation should be viewed as an exercise in argument, rather than as a demonstration, because any study appears equivocal when subjected to serious scrutiny.



## What to evaluate in Design Science Research

- Depending on the artifact, there are different aspects that can be evaluated, for example
  - performance (of a technical system)
  - organizational impact
- Depending on what to be evaluated there are different evaluation methods, e.g.

| What to evaluate    | Evaluation Methods                                                                      |
|---------------------|-----------------------------------------------------------------------------------------|
| Performance         | analytical modeling, simulation, measurement, testing                                   |
| Organisation impact | quantitative surveys, qualitative interviews, focus groups, questionnaires, observation |





Example1: We develop and introduce a new IT system that supports customer consultants in a bank in recommending financial products reducing effort and making recommendations better

How would you make the evaluation?







- Measurements / Observational Case Studies
  - Study the designed artifact in depth in a real environment.
  - Observe the use of the artifact to gain understanding of its value and utility.
  - Measurement is typically used for Performance Evaluation
  - Metrics are criteria for variables to evaluate the performance, e.g.
    - efficiency (time required, use of resources, scalability)
    - effectiveness (accuracy, quality of results)







Alternative evaluations, if you cannot measure the artefact in a real environment:

- Descriptive evaluation
  - Informed argument uses information from knowledge base to build a convincing argument for artifact's utility.
- Scenarios construction
  - construct detailed scenarios around artifact to demonstrate its utility.
- Experimental methods
  - controlled experiments in which you study the artifact in controlled environment for qualities (e.g., usability).
  - *simulation* models: execute the artifact with artificial data and observe dynamic performance behavior and scalability.
- ♦ Analytical techniques
  - examine the structure of the artifact for static qualities (e.g., complexity, architecture) or behaviours





- The evaluation should be critical in order to provide evidence
- Even if not applicable in a real scenario, you have to allow and stimulate a critical assessment of your artefact
  - Construction a scenario in which the systems is used and assessed
  - Make a workshop in which the artefact is evaluated be several people (maybe covering different perspective), e.g. focus group
- Be careful with interviews:
  - Often too shallow interviewee must be very familiar with the artefact
  - Critical setting: Determine weaknesses, not ask for confirmation



# Using Evidence Appropriately

- Your use of the evidence must
  - relate it clearly to the point that you want to make.
- If your evidence has shortcomings, but you still believe it is useful, you must
  - admit to those shortcomings and
  - justify why you believe the evidence still supports your point.
- You should present both
  - evidence that is in favor of your thesis and
  - evidence that contradicts it.

(Ignoring contradicting evidence or weaknesses in evidence suggests to readers that you are afraid that your argument would fall apart.) (Hofstee 2006, pp. 146ff)




# Assess Quality of your Evidence



# <sup>35</sup> Evidence and Research Methods

- To provide evidence you have to make sure that
  - the research method was suitable for your research
  - You have applied it appropriately and
  - that the conclusions you drew are valid
- The reader and reviewer of your thesis/paper (in particular your supervisor and the examiners) will check whether you did it adequately
- In the following we provide some sample questions you (or a reviewer) can use as guidelines to check the adequate application of the evidence.





- Hevner, A. R., & Chatterjee, S. (2010). Design Research in Information Systems. Media. New York Dordrecht Heidelberg London: Springer.
- Hofstee, E. (2006). Construction a Good Dissertation.
   Johannesburg, South Africa: EPE.
- Oates, B.J. (2010). Researching Information Systems and Computing. London: SAGE Publications.

