Model Checking I
alias
Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics
e State-based view of transition systems, Executions and Paths.
e Linear time view versus Branching time view.

e Traces of a transition system, examples.

Material

Reading:

Chapter 2 of the book, pages 20-26.
Chapter 3 of the book, pages 89-99.
More:

The slides in the following pages are taken from the material of the course “Introduction to Model Check-
ing” held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

O V e rV i ew OVERVIEW3

Introduction

Modelling parallel systems
Linear Time Properties
Regular Properties

Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

1/343

O V e rV i ew OVERVIEW3

Introduction
Modelling parallel systems

Linear Time Properties
state-based and linear time view «—
definition of linear time properties
invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

2/343

State-based view of TS T

transition system 7 = (S, Act,—, Sp, AP, L)

3/343

State-based view of TS T

transition system 7 = (S, Act,—, Sp, AP, L)

Act for modeling interactions/communication

AP, L for specifying properties

4/343

State-based view of TS T

transition system 7 = (S, Act,—, Sp, AP, L)

Act for modeling interactions/communication
and specifying fairness assumptions

AP, L for specifying properties

5/343

State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

Act for modeling interactions/communication
and specifying fairness assumptions

AP, L for specifying properties

6/343

State-based view of TS s5v2.3-1
transition system 7 = (S, Act,—, Sp, AP, L)

l abstraction from actions

state graph Gr
e set of nodes = state space S
e edges = transitions without action label

use standard notations
for graphs, e.g.,

Post(s) = {t€ S:s—t}
Pre(s) = {u€S:u— s}

7/343

Execution fragments SBv2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -
So —> S| — ... infinite or

Oéo af]_ @n—l -
Sy —> S| — ... > sp finite

8/343

Execution and path fragments S5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite or
Oéo af]_ @n—l -

Sy —> S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

9/343

Execution and path fragments S5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite or
Oéo af]_ Ofn—l -

Sy —> S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = 5951 5... infinite or m™=s81...5, finite

such that s;41 € Post(s;) for all i < ||

10/343

Execution and path fragments S5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite or
Oéo af]_ @n—l -

Sy —> S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = 5951 5... infinite or m™=s81...5, finite

such that s;41 € Post(s;) for all i < ||

initial: if sp € Sg = set of initial states

11/343

Execution and path fragments S5v2.3-2

execution fragment: sequence of consecutive transitions

Qo aq C e -

So —> S| — ... infinite or
060 aq Op—1 -

Sy —> S| — ... > sp finite

path fragment: sequence of states arising from the
projection of an execution fragment to the states

T = 5951 5... infinite or m™=s81...5, finite

such that s;41 € Post(s;) for all i < ||

initial: if sp € Sg = set of initial states

maximal: if infinite or ending in a terminal state

12/343

Notations for paths SBV2.3-2

path fragment: sequence of states
T = Sy S515... infinite or m=s55...5, finite
s.t. sit1 € Post(s;) for all i < ||

initial; if 59 € Sop = set of initial states
maximal: if infinite or ending in terminal state

path of TS 7 = initial, maximal path fragment

13/343

Notations for paths SBV2.3-2

path fragment: sequence of states
T = Sy S515... infinite or m=s55...5, finite
s.t. sit1 € Post(s;) for all i < ||

initial; if 59 € Sop = set of initial states
maximal: if infinite or ending in terminal state
path of TS T initial, maximal path fragment

I 1

maximal path fragment starting
in state s

path of state s

14/343

Notations for paths SBV2.3-2

path fragment: sequence of states
T = Sy S515... infinite or m=s55...5, finite
s.t. sit1 € Post(s;) for all i < ||

initial; if 59 € Sop = set of initial states
maximal: if infinite or ending in terminal state
path of TS T initial, maximal path fragment

I 1

maximal path fragment starting
in state s

path of state s

Paths(T) = set of all initial, maximal path fragments

Paths(s) = set of all maximal path fragments
starting in state s

15

Paths of a TS

T: S0
o B How many paths are there in 77
51 2

16/343

Paths of a TS

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

17/343

Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---

18/343

Paths of a TS and its states

T: S0
o B How many paths are there in 77
51 2

answer. 2, namely sy 51 51 51... and s 5

Paths(s;) = set of all maximal paths fragments
starting in s;
= {Si*)} where 5‘1‘) =5155S8 ---

Pathsg,(s1) = set of all finite path fragments
starting in s;
={sf:neN,n>1}

19/343

OverView OVERVIEW3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view «—
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

20 /343

OverView OVERVIEW3.1

Introduction

Modelling parallel systems

Linear Time Properties
state-based and linear time view — +«—
definition of linear time properties

invariants and safety
liveness and fairness

Regular Properties
Linear Temporal Logic
Computation-Tree Logic

Equivalences and Abstraction

21/343

Linear-time vs branching-time Lrp2.4-1

22/343

Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

23 /343

Linear-time vs branching-time Lrp2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

abstraction from actions

state graph
+ labeling

24/343

Linear-time vs branching-time Lrp2.4-1

T = (S, Act,—, Sp, AP, L)

transition system

abstraction from actions

state graph
+ labeling

linear-time view

/ \ branching-time view

25/343

Linear-time vs branching-time

LTB2.4-1

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view
path-based
state sequences

irrelevant

branching structure

abstraction from actions

/ \ branching-time view

nondeterministic
branches

state & branches

26/343

Example: vending machine

vending machine with
1 coin deposit
select drink after
having paid

LTB2.4-2

27 /343

Example: vending machine Lr2.4-2

(sprite)
vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin

28 /343

Example: vending machine Lr2.4-2

take take _
(coke) coke sprite(sprite

vending machine with vending machine with
1 coin deposit 2 coin deposits
select drink after select drink by inserting

having paid the coin

29 /343

Example: vending machine Lr2.4-2

take take
(sprite) (coke) coke sprite(sprite

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

30/343

Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

e.g., L(coke) = {coke}, L(pay) = &

31/343

Example: vending machine Lr2.4-2

state based view: abstracts from actions and projects
onto atomic propositions, e.g. AP = {coke, }

linear time: all observable behaviors are of the form

OO?O0.00.00.
Oor®

32/343

Example: vending machine Lrs2.4-3

(sprite)

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

33/343

Example: vending machine Lrs2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}

34/343

Example: vending machine Lrs2.4-3

state based view: abstracts from actions and projects
on atomc propositions, e.g., AP = {pay, drink}
linear & branching time:
all observable behaviors have the form

00000000000

35/343

Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

abstraction from actions

AN

branching-time view

state & branches

36 /343

Linear-time vs branching-time

LTB2.4-1-TRACES

transition system

T = (S, Act,—, Sp, AP, L)

state graph
+ labeling

linear-time view

state sequences

Y

traces

abstraction from actions

VAN

on AP

projection | branching-time view

state & branches

J

computation tree

37/343

38/343

Traces A

for TS with labeling function L : § — 24P

execution: states + actions

87 (a7 Q
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S) ... infinite or 59515, finite

39/343

Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

(07 a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

S0515...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(sp) L(s1) L(sp) - --

40/343

Traces

LTB2.4-4

for TS with labeling function L : § — 24P

)

(07 a3

execution: states + actions

S

S0 > 51

> 5

7 e e

. infinite or finite

SHS15...

paths: sequences of states
infinite or Sp 51 . .. S, finite

|

traces: sequences of sets of atomic propositions

L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

41/343

Traces A

for TS with labeling function L : § — 24P

execution: states + actions

87 (a7 Q
Sp —> §] —> 5p —> ... infinite or finite

paths: sequences of states
S S1S) ... infinite or 59515, finite

|

traces: sequences of sets of atomic propositions
L(so) L(s1) L(sp) ... € (2*P)u (2*P)*

for simplicity: we often assume that the given TS has
no terminal states

42/343

Traces A

for TS with labeling function L : § — 24P

execution: states + actions
o

Sop —> §] —> 5p —> ... infinite or “firre_

paths: sequences of states

0515 ... infinite or sgS—=rsy—fiite_

traces: sequences of sets of atomic propositions
L(so) L(s1) L(s2) - .. € (247)* u 289

for simplicity: we often assume that the given TS has
no terminal states

43 /343

Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

44/343

Treatment of terminal states 1TB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

45 /343

Treatment of terminal states L1B2.4-6
perform standard graph algorithms to compute

the reachable fragment of the given TS

) set of states that are reachable
Reach(T) = { from some initial state

for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV

46 /343

Treatment of terminal states LTB2.4-6

perform standard graph algorithms to compute
the reachable fragment of the given TS

Reach(T) _ set of states thqt-a-re reachable
from some initial state
for each reachable terminal state s:

e if s stands for an intended halting configuration
then add a transition from s to a trap state:

ARV

e if s stands for system fault, e.g., deadlock then
correct the design before checking further properties

47/343

Traces of a transition system LrB2.4-5

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

Tracesgn(T) &ef {trace(T) : © € Pathsn(T)}

48 /343

Traces of a transition system LrB2.4-5

Let 7 bea TS

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, maximal path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

49/343

Traces of a transition system LrB2.4-5

Let 7 be a TS «—| without terminal states

Traces(T) &ef {trace(r) : w € Paths(T)}

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : © € Pathsn(T)}

initial, finite path fragment

50 /343

Traces of a transition system LrB2.4-5

Let 7 be a TS «—| without terminal states

Traces(T) def {trace(ﬂ) = Paths(T)} C (24Py”

initial, infinite path fragment

Tracesgin(T) &ef {trace(T) : T € Pathss(T)} C (24F)*

initial, finite path fragment

51/343

Example: traces LTB2.4-54

Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Paths(T)} C (24F)*

h m TS T with a single
atomic proposition a

{a} 2

52 /343

Example: traces LTB2.4-54
Let 7 be a TS without terminal states.
Traces(T) & {trace(r) : m € Paths(T)} C (24P)~
Tracessn(T) & {trace(T) : T € Paths(T)} C (24F)*
h m TS T with a single
{a} > atomic proposition a
Traces(T) = {{a}e~, 2*}

Tracessn(T) = {{a}2":n>0} U {@™:m>1}

53 /343

Mutual exclusion with semaphore

Py (noncrity) P2 (noncrity)

y=y+1, y=y+1,

s,y >0ry=y-1 sy >0 y=y—1

l‘n‘critl) (.‘Critg)

transition system 7p,|p, arises by unfolding the
composite program graph Py ||| P2

54 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
walt; noncrity noncrit; waity
y=1] [y=1)
/
crit; noncrity walt; walits noncrity crity
%) %™

crity wal altl crity
0 0

set of atomic propositions AP = {crity, crity }

55/343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; nOhCI’Itg] noncrit; Waltgj
y=1 y=1
/ N
[crltl noncrltg] (noncrltl Cl’ltg]
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }

e.g., L({noncrity, noncrity, y=1)) =
L({waity, noncritp,y=1)) = &

56 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg] [noncrltl Waltg]
y=1 y=1
[
C:rltl noncrltg] (noncrltl Crltg)
y=0 =1 y=0

crit; wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...

57 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...

58 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...

59 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

60 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

61/343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

62 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
\
wait; noncrltgj noncr|t1 Waltgj
y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

63 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj Cnoncrltl cnt
y=0 =1 y=0

p

=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crit,} & ...
T

64 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltgj [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl cnt
y=0 =1 y=0

)

— et
=0 =0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
T

65 /343

Mutual exclusion with semaphore 7p,p,

noncrit; noncrity

y=1
wait; noncrltg) [noncrltl Waltg]
y=1 y=1
[
[crltl noncrltgj [noncrltl Cl’ltg]
y=0 =1 y=0

crity wa| a|t1 crity
0 0

set of atomic propositions AP = {crity, crity }
traces, e.g., @ & {crit;} & & {crit;} & & {crity } ...
o & & {crity } & {crity} {crity} & ...
T

66 /343

Mutual exclusion with semaphor 7p,p,

noncrl\t‘l noncrits
y=1
wait; noncrltzj @oncrltl walty
y=1 y=1)
/
crit; noncrity walt; walty noncrit; crit
™5™ "%

)

set of propositions AP = {waity, crity, waity, crit }

67 /343

Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrity
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1
~N
[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

crity wa| a|t1 crity

set of propositions AP = {waity, crity, waity, crit }

e.g., L({noncrity, noncrity, y=1)) = &
L({waity, crity, y=1)) = {waity, crit,}

68 /343

Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
y=1
wait; noncrltgj @oncrltl Waltg)
y=1 y=1

[crltl noncrltgj [noncrltl Crltz)
y=0 =1 y=0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”

69 /343

Mutual exclusion with semaphor 7p,p,

\
noncrit; noncrits
-~ v=1
wait; noncrﬁé] @oncrltl Waltg)
y=1 _ y=1
[cntl noncntzj [noncntl Cl’ltg)

..............................
=0 =0

set of propositions AP = {waity, crity, waity, crit }

traces, e.g.,

@ ({wait; } {waity, wait, } {waity, crit})”

70/343

