Model Checking I alias Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics

- State-based view of transition systems, Executions and Paths.
- Linear time view versus Branching time view.
- Traces of a transition system, examples.

Material

Reading:

Chapter 2 of the book, pages 20–26. Chapter 3 of the book, pages 89–99.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Introduction

Modelling parallel systems

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$

Act for modeling interactions/communication

AP, **L** for specifying properties

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$

Act for modeling interactions/communication and specifying fairness assumptions

AP, L for specifying properties

transition system
$$T = (S, Act, \longrightarrow, S_0, AP, L)$$
abstraction from actions

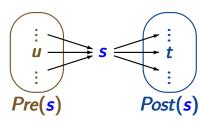
state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

Act for modeling interactions/communication and specifying fairness assumptions

AP, L for specifying properties

transition system $T = (S, Act, \longrightarrow, S_0, AP, L)$ abstraction from actions


state graph G_T

- set of nodes = state space 5
- edges = transitions without action label

use standard notations for graphs, e.g.,

$$Post(s) = \{t \in S : s \to t\}$$

$$Pre(s) = \{u \in S : u \to s\}$$

$$s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$$
 infinite or $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n$ finite

$$s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$$
 infinite or $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n$ finite

path fragment: sequence of states arising from the projection of an execution fragment to the states

$$s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$$
 infinite or $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n$ finite

path fragment: sequence of states arising from the projection of an execution fragment to the states $\pi = s_0 s_1 s_2...$ infinite or $\pi = s_0 s_1 ... s_n$ finite such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

$$s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$$
 infinite or $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n$ finite

path fragment: sequence of states arising from the projection of an execution fragment to the states $\pi = s_0 s_1 s_2 \dots$ infinite or $\pi = s_0 s_1 \dots s_n$ finite such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0 = \text{set of initial states}$

execution fragment: sequence of consecutive transitions $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \qquad \text{infinite} \qquad \text{or}$ $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_{n-1}} s_n \quad \text{finite}$

path fragment: sequence of states arising from the projection of an execution fragment to the states $\pi = s_0 \, s_1 \, s_2 \dots \text{ infinite } \text{ or } \pi = s_0 \, s_1 \dots s_n \text{ finite }$ such that $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$

initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in a terminal state

```
path fragment: sequence of states \pi = s_0 s_1 s_2... \text{ infinite or } \pi = s_0 s_1 ... s_n \text{ finite } s.t. s_{i+1} \in Post(s_i) for all i < |\pi|
```

```
initial: if s_0 \in S_0 = set of initial states maximal: if infinite or ending in terminal state path of TS T \hat{} initial, maximal path fragment
```

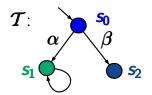
```
path fragment: sequence of states \pi = s_0 s_1 s_2... \text{ infinite or } \pi = s_0 s_1 ... s_n \text{ finite } s.t. s_{i+1} \in Post(s_i) for all i < |\pi|
```

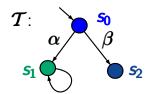
```
maximal: if infinite or ending in terminal state

path of TS T \stackrel{\frown}{=} initial, maximal path fragment

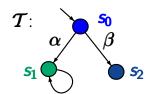
path of state s \stackrel{\frown}{=} maximal path fragment starting

in state s
```

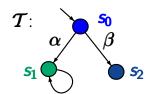

initial: if $s_0 \in S_0 = \text{set of initial states}$


path fragment: sequence of states

$$\pi = s_0 s_1 s_2...$$
 infinite or $\pi = s_0 s_1 ... s_n$ finite s.t. $s_{i+1} \in Post(s_i)$ for all $i < |\pi|$


initial: if $s_0 \in S_0$ = set of initial states maximal: if infinite or ending in terminal state

path of TS T $\stackrel{\frown}{=}$ initial, maximal path fragment path of state s $\stackrel{\frown}{=}$ maximal path fragment starting in state s



answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

Paths(s_1) = set of all maximal paths fragments starting in s_1 = $\{s_1^{\omega}\}$ where $s_1^{\omega} = s_1 s_1 s_1 s_1 \dots$

answer: 2, namely $s_0 s_1 s_1 s_1 \dots$ and $s_0 s_2$

```
Paths(s_1) = set of all maximal paths fragments
starting in s_1
= \{s_1^{\omega}\} where s_1^{\omega} = s_1 s_1 s_1 s_1 ...
```

 $Paths_{fin}(s_1) = \text{set of all finite path fragments}$ $starting in s_1$ $= \{s_1^n : n \in \mathbb{N}, n \ge 1\}$

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Introduction

Modelling parallel systems

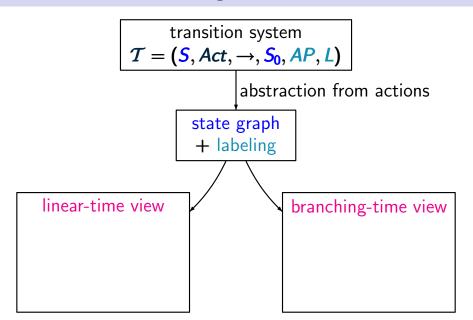
Linear Time Properties

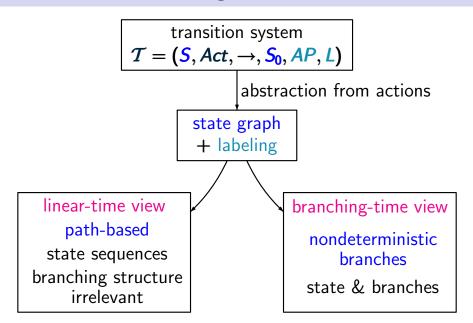
state-based and linear time view definition of linear time properties invariants and safety liveness and fairness

Regular Properties

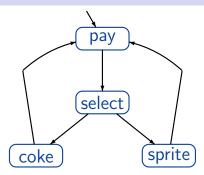
Linear Temporal Logic

Computation-Tree Logic


Equivalences and Abstraction

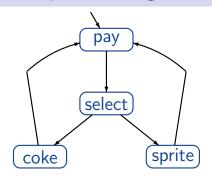

Linear-time vs branching-time

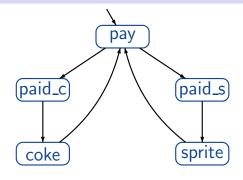
LTB2.4-1


transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$

transition system
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
abstraction from actions
$$\begin{array}{c} \text{state graph} \\ + \text{labeling} \end{array}$$

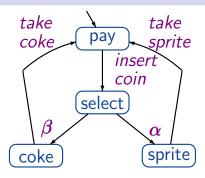
Example: vending machine

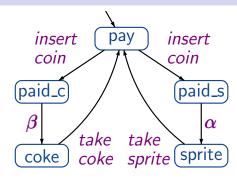

vending machine with


1 coin deposit

select drink after
having paid

Example: vending machine

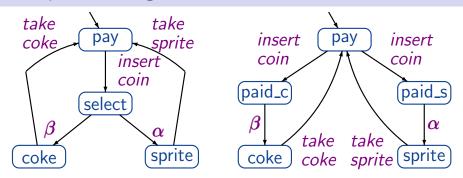



vending machine with

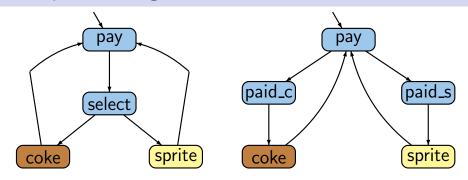
1 coin deposit

select drink after
having paid

vending machine with
2 coin deposits
select drink by inserting
the coin

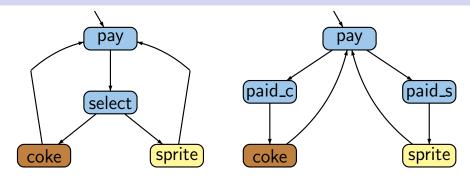


vending machine with


1 coin deposit

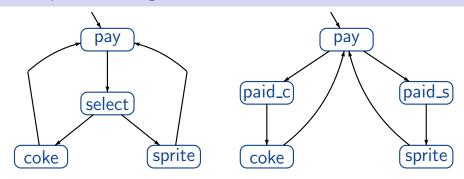
select drink after
having paid

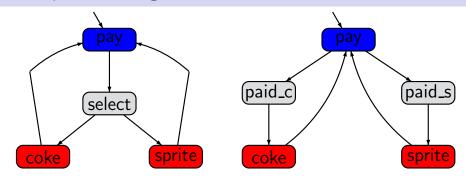
vending machine with
2 coin deposits
select drink by inserting
the coin



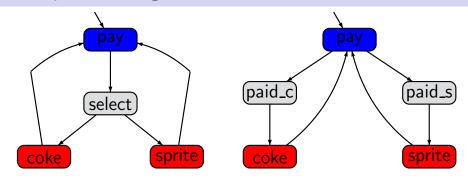
state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$


e.g.,
$$L(coke) = \{coke\}, L(pay) = \emptyset$$


state based view: abstracts from actions and projects onto atomic propositions, e.g. $AP = \{coke, sprite\}$

linear time: all observable behaviors are of the form

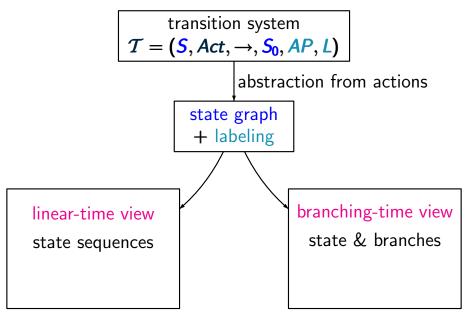


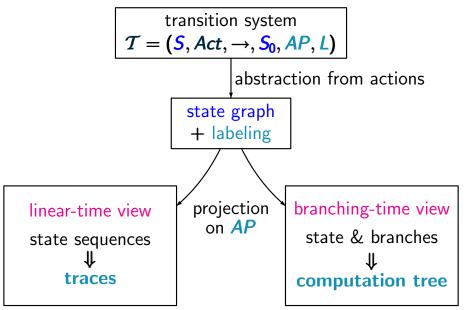
state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$

state based view: abstracts from actions and projects on atomic propositions, e.g., $AP = \{pay, drink\}$ linear & branching time:

all observable behaviors have the form





for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states $s_0 s_1 s_2 \dots s_n$ finite

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \ldots$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions

$$L(s_0) L(s_1) L(s_2) \ldots \in (2^{AP})^{\omega} \cup (2^{AP})^+$$

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{+}$$

for simplicity: we often assume that the given TS has

for TS with labeling function $L: S \rightarrow 2^{AP}$

execution: states
$$+$$
 actions
$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots \text{ infinite or } \text{finite}$$

paths: sequences of states
$$s_0 s_1 s_2 \dots \text{ infinite or } s_0 s_1 \dots s_n \text{ finite}$$

traces: sequences of sets of atomic propositions
$$L(s_0) L(s_1) L(s_2) \dots \in (2^{AP})^{\omega} \cup (2^{AP})^{\omega}$$

for simplicity: we often assume that the given TS has

$$Reach(T) = \begin{cases} \text{set of states that are reachable} \\ \text{from some initial state} \end{cases}$$

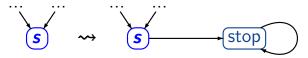
$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:


 if s stands for an intended halting configuration then add a transition from s to a trap state:

$$Reach(T) = \begin{cases} set of states that are reachable from some initial state \end{cases}$$

for each reachable terminal state s:

 if s stands for an intended halting configuration then add a transition from s to a trap state:

• if **s** stands for system fault, e.g., deadlock then correct the design before checking further properties

Let T be a TS

$$Traces(\mathcal{T}) \stackrel{\mathsf{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\}$$

$$Traces_{fin}(\mathcal{T}) \stackrel{\mathsf{def}}{=} \{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \}$$

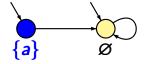
Let T be a TS

$$Traces(T) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(T) \right\}$$

initial, maximal path fragment

Let \mathcal{T} be a TS \longleftarrow without terminal states

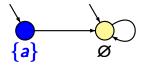
$$\begin{array}{ll} \textit{Traces}(\mathcal{T}) & \stackrel{\mathsf{def}}{=} \big\{ \textit{trace}(\pi) : \pi \in \textit{Paths}(\mathcal{T}) \big\} \\ & \uparrow \\ & \mathsf{initial, infinite path fragment} \end{array}$$


Let \mathcal{T} be a TS \longleftarrow without terminal states

Traces(
$$\mathcal{T}$$
) $\stackrel{\text{def}}{=}$ $\{trace(\pi) : \pi \in Paths(\mathcal{T})\}$ $\subseteq (2^{AP})^{\omega}$ initial, infinite path fragment

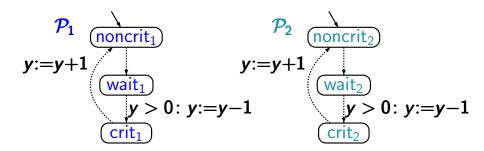
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$
initial, finite path fragment

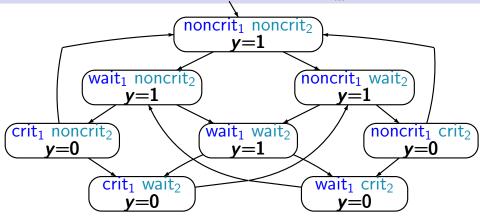
Let T be a TS without terminal states.


$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^{*}$$

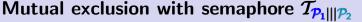
TS *T* with a single atomic proposition *a*

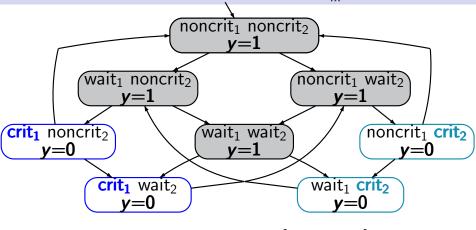
Let T be a TS without terminal states.


$$Traces(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\pi) : \pi \in Paths(\mathcal{T}) \right\} \subseteq (2^{AP})^{\omega}$$
$$Traces_{fin}(\mathcal{T}) \stackrel{\text{def}}{=} \left\{ trace(\widehat{\pi}) : \widehat{\pi} \in Paths_{fin}(\mathcal{T}) \right\} \subseteq (2^{AP})^*$$

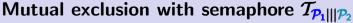

TS *T* with a single atomic proposition *a*

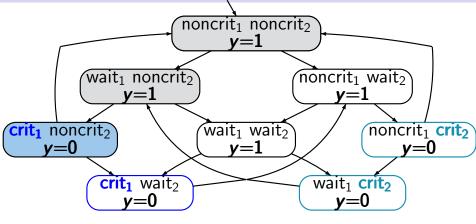
$$Traces(T) = \{\{a\}\varnothing^{\omega}, \varnothing^{\omega}\}$$

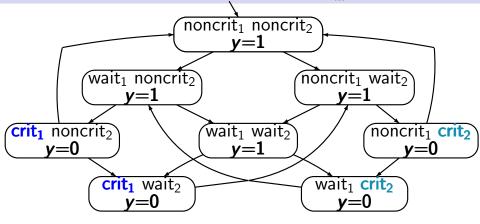

$$Traces_{fin}(\mathcal{T}) = \{\{a\}\varnothing^n : n \ge 0\} \cup \{\varnothing^m : m \ge 1\}$$



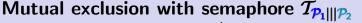
transition system $T_{\mathcal{P}_1||\mathcal{P}_2}$ arises by unfolding the composite program graph $\mathcal{P}_1||\mathcal{P}_2$

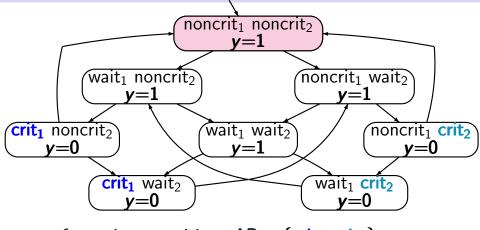

set of atomic propositions $AP = \{crit_1, crit_2\}$

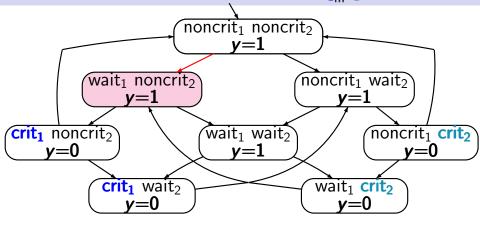


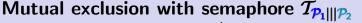

set of atomic propositions
$$AP = \{crit_1, crit_2\}$$

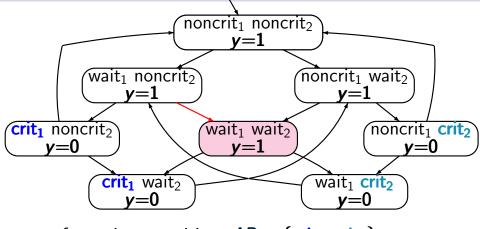
e.g.,
$$L(\langle \text{noncrit}_1, \text{noncrit}_2, y=1 \rangle) = L(\langle \text{wait}_1, \text{noncrit}_2, y=1 \rangle) = \emptyset$$



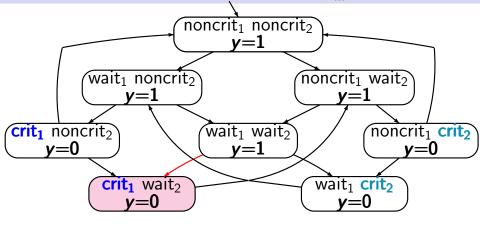


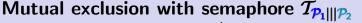

set of atomic propositions $AP = \{ crit_1, crit_2 \}$ traces, e.g., $\varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} ...$

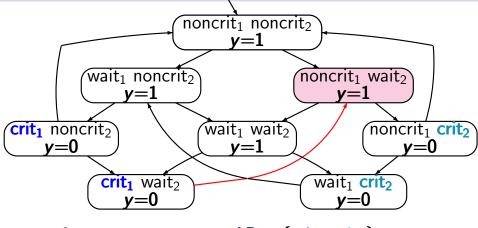


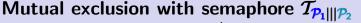

set of atomic propositions
$$AP = \{ crit_1, crit_2 \}$$

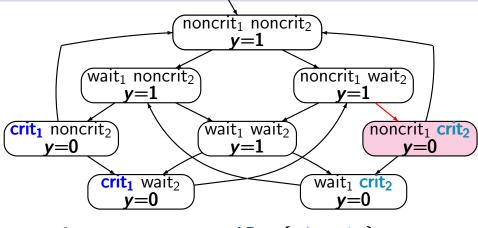
traces, e.g., $\varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} \varnothing \varnothing \{ crit_1 \} ...$
 $\varnothing \varnothing \varnothing \{ crit_1 \} \varnothing \{ crit_2 \} \{ crit_2 \} \varnothing ...$

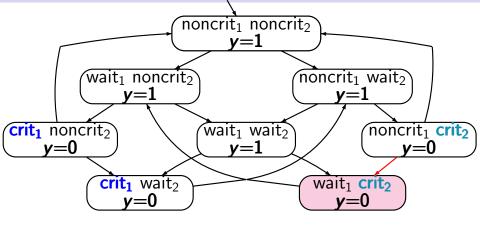


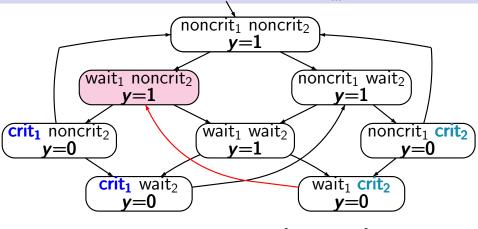


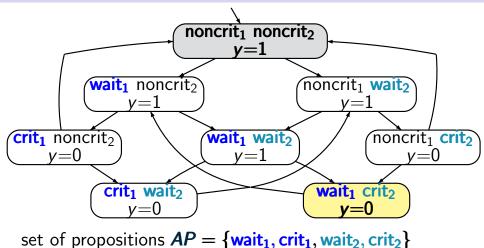


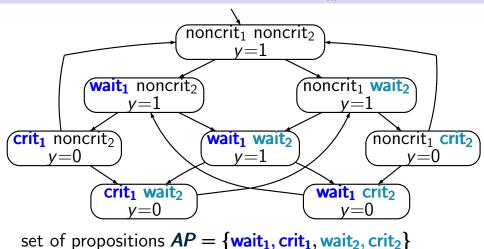




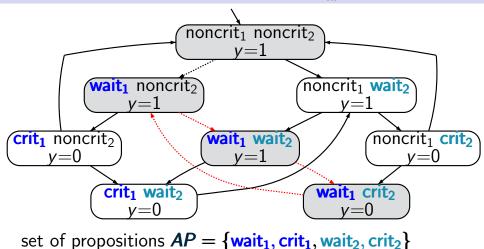








set of propositions $AP = \{wait_1, crit_1, wait_2, crit_2\}$



e.g.,
$$L(\langle \mathsf{noncrit}_1, \mathsf{noncrit}_2, y = 1 \rangle) = \emptyset$$

 $L(\langle \mathsf{wait}_1, \mathsf{crit}_2, y = 1 \rangle) = \{ \mathsf{wait}_1, \mathsf{crit}_2 \}$

traces, e.g.,

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$

traces, e.g.,

 $\varnothing\left(\left\{\mathsf{wait}_{1}\right\}\left\{\mathsf{wait}_{1},\mathsf{wait}_{2}\right\}\left\{\mathsf{wait}_{1},\mathsf{crit}_{2}\right\}\right)^{\omega}$