Model Checking I alias Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics

- Safety Properties and Bad Prefix.
- Prefix Closure.

Material

Reading:

Chapter 3 of the book, pages 111–116.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Invariant

IS2.5-DEF-INVARIANT

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

Let \boldsymbol{E} be an LT property over \boldsymbol{AP} .

E is called an invariant if there exists a propositional formula Φ over **AP** such that

$$E = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} : \forall i \geq 0. A_i \models \Phi \right\}$$

 Φ is called the invariant condition of E.

mutual exclusion: never crit₁ ∧ crit₂

• deadlock freedom: e.g., for dining philosophers

never $\bigwedge_{0 \le i < n} \frac{wait_i}{}$

mutual exclusion: never crit₁ ∧ crit₂

deadlock freedom: e.g., for dining philosophers

never $\bigwedge_{0 \le i < n} wait_i$

German traffic lights:

every red phase is preceded by a yellow phase

mutual exclusion: never crit₁ ∧ crit₂

deadlock freedom: e.g., for dining philosophers

never $\bigwedge_{0 \le i \le n} wait_i$

German traffic lights:

every red phase is preceded by a yellow phase

beverage machine:

no drink must be released if the user did not enter a coin before

the total number of entered coins is never less than the total number of released drinks

invariants:

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;

other safety properties:

- German traffic lights:
 every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

invariants: ← "no **bad state** will be reached"

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;
 0≤i<n

other safety properties:

- German traffic lights:
 every red phase is preceded by a yellow phase
 - beverage machine:

the total number of entered coins is never less than the total number of released drinks

other safety properties:

"no bad prefix"

state that "nothing bad will happen"

```
invariants: ← "no bad state will be reached"
```

- mutual exclusion: never crit₁ ∧ crit₂
- deadlock freedom: never ∧ wait;
 0≤i<n

```
    German traffic lights:
```

- every red phase is preceded by a yellow phase
- beverage machine:
 the total number of entered coins is never less
 than the total number of released drinks

every red phase is preceded by a yellow phase

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase

e.g.,
$$\dots$$
 { \bullet } { \bullet }

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., \dots $\{\bullet\}$ $\{\bullet\}$

beverage machine:

the total number of entered coins is never less than the total number of released drinks

every red phase is preceded by a yellow phase

bad prefix: finite trace fragment where a red phase appears without being preceded by a yellow phase e.g., \dots $\{\bullet\}$

• beverage machine:

the total number of entered coins is never less than the total number of released drinks

bad prefix, e.g., {pay} {drink} {drink}

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

E = set of all infinite words that do *not* have a bad prefix

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=} set of bad prefixes for E$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$

E is called a safety property if for all words

$$\sigma = A_0 A_1 A_2 ... \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

$$E \cap \{\sigma' \in (2^{AP})^{\omega} : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

 $BadPref_E \stackrel{\text{def}}{=}$ set of bad prefixes for $E \subseteq (2^{AP})^+$ briefly: BadPref

E is called a safety property if for all words

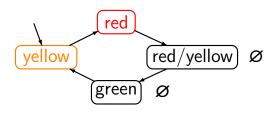
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \setminus E$$

there exists a finite prefix $A_0 A_1 \dots A_n$ of σ such that none of the words $A_0 A_1 \dots A_n B_{n+1} B_{n+2} B_{n+3} \dots$ belongs to E, i.e.,

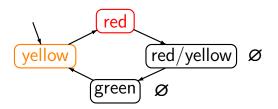
$$E \cap \{\sigma' \in (2^{AP})^\omega : A_0 \dots A_n \text{ is a prefix of } \sigma'\} = \emptyset$$

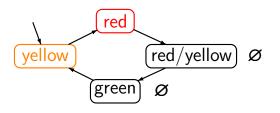
Such words $A_0 A_1 \dots A_n$ are called bad prefixes for E.

minimal bad prefixes: any word $A_0 \dots A_i \dots A_n \in BadPref$ s.t. no proper prefix $A_0 \dots A_i$ is a bad prefix for E



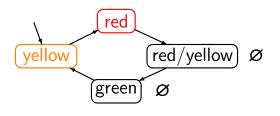
$$AP = \{red, yellow\}$$





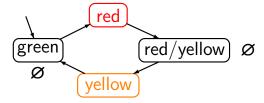
hence: $T \models E$

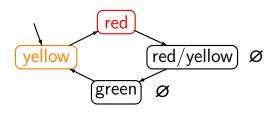
```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



hence: $T \models E$

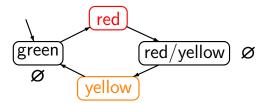
```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



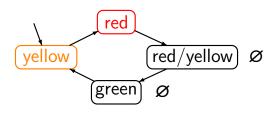


hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```

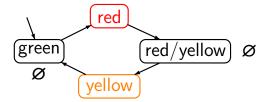


"there is a red phase that is not preceded by a yellow phase"



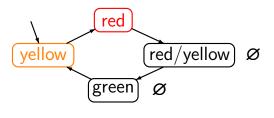
hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 \dots
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```



"there is a red phase that is not preceded by a yellow phase"

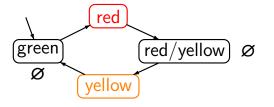
hence: $T \not\models E$



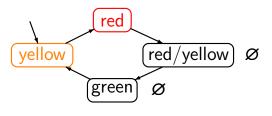
hence: $T \models E$

$$E = \text{ set of all infinite words } A_0 A_1 A_2 ...$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
 $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$



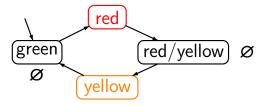
 $T \not\models E$ bad prefix, e.g., $\emptyset \{ red \} \emptyset \{ yellow \}$



hence: $T \models E$

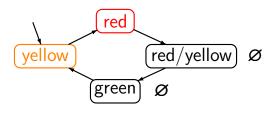
$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots$$

over 2^{AP} such that for all $i \in \mathbb{N}$:
 $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$



 $T \not\models E$ minimal bad prefix:

 \emptyset { red }



hence: $T \models E$

```
E = \text{ set of all infinite words } A_0 A_1 A_2 ...
over 2^{AP} such that for all i \in \mathbb{N}:
red \in A_i \implies i \ge 1 and yellow \in A_{i-1}
```

is a safety property over $AP = \{red, yellow\}$ with

BadPref = set of all finite words
$$A_0 A_1 ... A_n$$

over 2^{AP} s.t. for some $i \in \{0, ..., n\}$:
red $\in A_i \land (i=0 \lor yellow \notin A_{i-1})$

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$\mathcal{T} \models E$$
 iff $\mathit{Traces}(\mathcal{T}) \subseteq E$

$$Traces(T)$$
 = set of traces of T

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$T \models E$$
 iff $Traces(T) \subseteq E$ iff $Traces_{fin}(T) \cap BadPref = \emptyset$

```
Traces(T) = \text{ set of traces of } T
Traces_{fin}(T) = \text{ set of finite traces of } T
= \left\{ trace(\widehat{\pi}) : \widehat{\pi} \text{ is an initial, finite path fragment of } T \right\}
```

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property, T a TS over AP.

$$T \models E$$
 iff $Traces(T) \subseteq E$
iff $Traces_{fin}(T) \cap BadPref = \emptyset$
iff $Traces_{fin}(T) \cap MinBadPref = \emptyset$

```
BadPref= set of all bad prefixes of EMinBadPref= set of all minimal bad prefixes of ETraces(T)= set of traces of TTraces<sub>fin</sub>(T)= set of finite traces of T= { trace(\hat{\pi}) : \hat{\pi} is an initial, finite path fragment of T}
```

correct.

Let E be an invariant with invariant condition Φ .

correct.

Let E be an invariant with invariant condition Φ .

• bad prefixes for E: finite words $A_0 \dots A_i \dots A_n$ s.t.

$$A_i \not\models \Phi$$
 for some $i \in \{0, 1, ..., n\}$

correct.

Let E be an invariant with invariant condition Φ .

- bad prefixes for E: finite words $A_0 ... A_i ... A_n$ s.t. $A_i \not\models \Phi$ for some $i \in \{0, 1, ..., n\}$
- minimal bad prefixes for E: finite words $A_0 A_1 ... A_{n-1} A_n$ such that $A_i \models \Phi$ for i = 0, 1, ..., n-1, and $A_n \not\models \Phi$

 \varnothing is a safety property

correct

• all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

 $(2^{AP})^{\omega}$ is a safety property

correct

- all finite words $A_0 \dots A_n \in (2^{AP})^+$ are bad prefixes
- Ø is even an invariant (invariant condition *false*)

$$(2^{AP})^{\omega}$$
 is a safety property

"For all words
$$\in (2^{AP})^{\omega} \setminus (2^{AP})^{\omega} \dots$$
"

Prefix closure

is2.5-prefix-closure

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$pref(\sigma) \stackrel{\text{def}}{=}$$
 set of all nonempty, finite prefixes of σ

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$pref(\sigma) \stackrel{\text{def}}{=}$$
 set of all nonempty, finite prefixes of σ

$$= \{A_0 A_1 \dots A_n : n \ge 0\}$$

For a given infinite word $\sigma = A_0 A_1 A_2 \dots$, let

$$pref(\sigma) \stackrel{\text{def}}{=}$$
 set of all nonempty, finite prefixes of σ

$$= \{A_0 A_1 \dots A_n : n \ge 0\}$$

For a given infinite word
$$\sigma = A_0 A_1 A_2 \dots$$
, let $\operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set}$ of all nonempty, finite prefixes of σ
$$= \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\}$$
 For $E \subseteq \left(2^{AP}\right)^{\omega}$, let $\operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in E} \operatorname{\textit{pref}}(\sigma)$

For a given infinite word
$$\sigma = A_0 A_1 A_2 \dots$$
, let $\operatorname{\textit{pref}}(\sigma) \stackrel{\mathsf{def}}{=} \operatorname{set}$ of all nonempty, finite prefixes of σ
$$= \left\{ A_0 A_1 \dots A_n : n \geq 0 \right\}$$
 For $E \subseteq (2^{AP})^{\omega}$, let $\operatorname{\textit{pref}}(E) \stackrel{\mathsf{def}}{=} \bigcup_{\sigma \in F} \operatorname{\textit{pref}}(\sigma)$

Given an LT property \boldsymbol{E} , the prefix closure of \boldsymbol{E} is:

$$cl(E) \stackrel{\text{def}}{=} \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

```
For any infinite word \sigma \in (2^{AP})^{\omega}, let pref(\sigma) = \text{set of all nonempty, finite prefixes of } \sigma
For any LT property E \subseteq (2^{AP})^{\omega}, let pref(E) = \bigcup_{\sigma \in E} pref(\sigma) and cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}
```

Theorem:

E is a safety property iff cl(E) = E