Model Checking Exercises with (Some) Solutions
 Teacher: Luca Tesei
 Master of Science in Computer Science - University of Camerino

Contents

1 Linear Time Properties 2

1 Linear Time Properties

Exercise 1.1. Give the traces on the set of $A P=a, b$ of the following transition system:

Exercise 1.2. Consider the following transition system:

1. Define formally the traces on the alphabet 2^{AP}, where $\mathrm{AP}=\{a, b\}$

Exercise 1.3. Consider the set AP of atomic propositions defined by $A P=\{x=0, x>1\}$ and consider a non -terminating sequential computer program P that manipulates the variable x. Formulate the following informally stated properties as LT properties:
a) false.
b) initially x is equal to zero.
c) initially x differs from zero.
d) initially x is equal to zero, but at some point x exceeds one.
e) x exceeds one only finitely many times.
f) x exceeds one infinitely often.
g) the value of x alternates between zero and two.
h) true

Exercise 1.4. Consider the set of atomic propositions $\mathrm{AP}=\{a, b, c\}$. Consider the following linear time properties informally stated:

1. initially a holds and b does not hold
2. c holds only finitely many times
3. from some point on the truth value of a alternates between true and false
4. whenever c holds, then a holds afterwards
5. b holds infinitely many times and whenever b holds then c holds afterwards
6. whenever c holds then a or b holds
7. a holds only finitely many times and cholds infinitely many times
8. whenever a holds then b and c holds after one step
9. never a and b hold at the same time and eventually c holds
10. at any point the number of times a held in the past is always greater than or equal to the number of times b held in the past.

For each property above, (a) formally write it as a set of infinite traces on 2^{AP} and (b) determine whether it is a safety, liveness or mixed (safety and liveness) linear time property. Justify your answers!
Hint: you may use the special quantifiers $\stackrel{\infty}{\forall} i$ ("for nearly all i ") and $\stackrel{\infty}{\exists} i$ ("there exists infinitely many is") as they are defined in the book.

Exercise 1.5. Give an algorithm (in pseudo-code) for invariant checking such that in case the invariant is refuted, a minimal counterexample, i.e. a counterexample of minimal length, is provided as error indication.

Exercise 1.6. Let P denote the set of traces of the form $A_{0} A_{1} A_{2} \ldots \in\left(2^{A P}\right)^{\omega}$ such that:

$$
\exists k . A_{k}=\{a, b\} \quad \wedge \quad \exists n \geq 0 . \forall k>n .\left(a \in A_{k} \Rightarrow b \in A_{k+1}\right) .
$$

Consider the following fairness assumptions with respect to the transition system TS outlined on the right:
a) $\mathcal{F}_{1}=(\{\{\alpha\}\},\{\{\beta\},\{\delta, \gamma\},\{\eta\}\}, \emptyset)$.

Decide whether $T S \not \models_{\mathcal{F}_{1}} P$.
b) $\mathcal{F}_{2}=(\{\{\alpha\}\},\{\{\beta\},\{\gamma\}\},\{\{\eta\}\})$.

Decide whether $T S \models_{\mathcal{F}_{2}} P$.
Justify your answers!

Exercise 1.7. Consider the transition system $T S$ on the right (where atomic propositions are omitted). Decide which of the following fairness assumption \mathcal{F}_{i} are realizable for $T S$. justify your answers!

a) $\mathcal{F}_{1}=(\{\{\alpha\}\},\{\{\delta\}\},\{\{\alpha, \beta\}\})$
b) $\mathcal{F}_{2}=(\{\{\delta, \alpha\}\},\{\{\alpha, \beta\}\},\{\{\gamma\}\})$
c) $\mathcal{F}_{3}=(\{\{\alpha, \delta\},\{\beta\}\},,\{\{\alpha, \beta\}\}\{\{\gamma\}\})$

Exercise 1.8. Consider the following transition system TS:

Consider the following linear time properties, where $\mathrm{AP}=\{a, b, c, d\}$:

$$
\begin{aligned}
& E_{1}=\left\{A_{0} A_{1} A_{2} \cdots \in\left(2^{\mathrm{AP}}\right)^{\omega} \mid \exists i: b \in A_{i}\right\} \\
& E_{2}=\left\{A_{0} A_{1} A_{2} \cdots \in\left(2^{\mathrm{AP}}\right)^{\omega} \mid \exists i: d \in A_{i}\right\}
\end{aligned}
$$

Finally, consider the following fairness assumptions:

$$
\begin{aligned}
& \mathcal{F}_{1}=(\{\{\beta\}\},\{\{\gamma\},\{\delta\}\},\{\{\alpha\}\}) \\
& \mathcal{F}_{2}=(\{\{\beta\}\},\{\{\gamma\}\},\{\{\alpha\}\}) \\
& \mathcal{F}_{3}=(\{\{\beta\}\},\{\{\gamma\}\},\{ \})
\end{aligned}
$$

Decide whether the following model checking statements hold or not:

1. $\mathrm{TS} \models_{\mathcal{F}_{1}} E_{1}$
2. $\mathrm{TS} \models_{\mathcal{F}_{1}} E_{2}$
3. $\mathrm{TS} \not \models_{\mathcal{F}_{2}} E_{1}$
4. $\mathrm{TS} \models_{\mathcal{F}_{2}} E_{2}$
5. $\mathrm{TS} \models_{\mathcal{F}_{3}} E_{1}$
6. $\mathrm{TS} \models_{\mathcal{F}_{3}} E_{2}$

Justify your answers!
Exercise 1.9. Let $n \geq 1$. Consider the language $L_{n} \subseteq \sum^{*}$ over the alphabet $\sum=\{A, B\}$ that consists of all finite words where the symbol B is on position n from the right, i.e., L_{n} contains exactly the words $A_{1} A_{2} \ldots A_{k} \in\{A, B\}^{*}$ where $k \geq n$ and $A_{k-n+1}=B$. For instance, the word $A B B A A B A B$ is in L_{3}.
a) Construct an NFA An with at most $n+1$ states such that $L\left(A_{n}\right)=L n$.
b) Determinize this NFA An using the powerset construction algorithm.

Solutions

Solution of Exercise 1.1

$\operatorname{Traces}(T S)=(\{a\}\{a\}+\{a\} \emptyset)(\{a, b\}+\{a, b\}\{a\})^{\omega}$

How many traces? 2, both infinite.

Solution of Exercise 1.2

All possible paths are of five kinds:

1. s_{1}^{ω}
2. $s_{1}^{+}\left(s_{5} s_{6} s_{2}\right)^{\omega}$
3. $s_{1}^{+}\left(s_{3} s_{4}\right)^{+} s_{2}\left(s_{5} s_{6} s_{2}\right)^{\omega}$
4. $s_{1}^{+}\left(s_{3} s_{4}\right)^{\omega}$
5. $s_{1}^{+}\left(s_{2} s_{5} s_{6}\right)^{\omega}$

The corresponding traces are:

$$
\begin{aligned}
& \left\{\{a\}^{\omega}\right\} \cup\left\{\{a\}^{+}(\{b\}\{a, b\}\{ \})^{\omega}\right\} \cup\left\{\{a\}^{+}(\{a\}\{b\})^{+}(\{ \}\{b\}\{a, b\})^{\omega}\right\} \cup \\
& \left\{\{a\}^{+}(\{a\}\{b\})^{\omega}\right\} \cup\left\{\{a\}^{+}(\{ \}\{b\}\{a, b\})^{\omega}\right\}
\end{aligned}
$$

Solution of Exercise 1.3

(a) $P=\varnothing$
(b) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid x_{0} \in A_{0}\right\}$
(c) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid x_{0} \notin A_{0}\right\}$
(d) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid x_{0} \in A_{0} \wedge \exists i:(x>i) \in A_{i} \wedge i>0\right\}$
(e) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid \exists i \geq 0: \forall j \geq i,(x>i) \notin A_{j}\right\}$
(f) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \geq 0: \exists j \geq i,(x>i) \in A_{j}\right\}$
(g) $P=\left\{A_{0}, A_{1}, A_{2} \ldots \in\left(2^{A P}\right)^{\omega} \mid\left(\forall(x=0) \in A_{i} \wedge(x>1) \in A_{i+1} \wedge i \bmod _{2}=0\right) \vee\right.$
$\left.\left(\forall(x=0) \in A_{i} \wedge(x>1) \in A_{i+1} \wedge i \bmod _{2}=1\right)\right\}$
(h) $P=\left(2^{A P}\right)^{\omega}$

Solution of Exercise 1.4

1. The property can be formally stated as
$P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid a \in A_{0} \wedge b \notin A_{0}\right\}$
This property is a SAFETY PROPERTY as a bad prefix can be any prefix of a word in $\left(2^{A P}\right)^{\omega}$ starting with $\}$ or $\{b\}$ or $\{c\}$ or $\{a, b\}$ or $\{b, c\}$ or $\{a, b, c\}$.
2. $P=\left\{A_{0}, A_{1},\left.\ldots \in\left(2^{A P}\right)^{\omega}\right|^{\infty} i \in N, c \notin A_{i}\right\}$

This is a LIVENESS PROPERTY because no prefix can be classified as bad because the information on the occurrences of " c " in the tail of the word is missing.
3. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid \exists i \in N: \forall j \geq i a \in A_{j} \Leftrightarrow a \notin A_{j}+i\right\}$ LIVENESS: no prefix can be classified as bad without the information on the tail of the word.
4. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \in N:\left(c \in A_{i} \Longrightarrow \exists j \geq i: a \in A_{j}\right)\right\}$ LIVENESS: as above.
5. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid\left(\exists i \in N: b \in A_{i}\right) \wedge\left(\forall i \in N:\left(b \in A_{i} \Longrightarrow \exists j \geq i: c \in A j\right)\right)\right\}$ LIVENESS.
6. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \in N\left(c \in A_{i} \Longrightarrow\left(a \in A_{i} \vee b \in A_{i}\right)\right)\right\}$

SAFETY: a bad prefix is, for instance, $\{c\}\}\}\} \ldots$
7. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid\left({ }^{\infty} i \in N: a \notin A_{i}\right) \wedge\left(\underset{\exists}{\infty} i \in N: c \in A_{i}\right)\right\}$ LIVENESS
8. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \in N: a \in A_{i} \Longrightarrow\left(b \in A_{i+1} \wedge c \in A_{i+1}\right)\right\}$ SAFETY: a bad prefix is for instance $\{a\}\{a\}\{a\} \ldots$
9. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega} \mid\left(\forall i \in N: a \in A_{i} \Leftrightarrow b \notin A_{i}\right) \wedge \exists i \in N: c \in A_{i}\right\}$ MIXED: a bad prefix for the first part is $\{a, b\}\}\} \ldots$
The part on " eventually " c cannot have a bad prefix, so it is liveness property.
10. $P=\left\{A_{0}, A_{1}, \ldots \in\left(2^{A P}\right)^{\omega}\left|\forall i \in N:\left|\left\{0 \leq j \leq i: a \in A_{j}\right\}\right| \geq\left|\left\{0 \leq j \leq i: b \in A_{j}\right\}\right|\right\}\right.$ Where | $\{\ldots\}$ | is set cardinality.
SAFETY: a bad prefix for example $\{b\}\}\} \ldots$

Solution of Exercise 1.5

The algorithm works as follows:

```
Algorithm 1 Invariant Checking using Breadth-First Search
Require: finite transition system \(T S\) and propositional formula \(\Phi\)
Ensure: true or the shortest counterexample
```

queue of states $Q=\varepsilon$;
finite trace $\hat{\sigma}=\varepsilon$;
set of states R;
set of tuples $P \subseteq S \times S$;
procedure bfs(state s)
enqueue (Q, s);
$P:=\{(s, \perp)\} ;$
$R:=\{s\}$;
while $(Q \neq \varepsilon) \wedge(\operatorname{first}(Q) \models \Phi)$ do
let $p:=\operatorname{dequeue}(Q)$;
for all $p^{\prime} \in \operatorname{Post}(p) \backslash R$ do
enqueue $\left(Q, p^{\prime}\right)$;
$R:=R \cup\left\{p^{\prime}\right\} ;$
$P:=P \cup\left\{\left(p^{\prime}, p\right)\right\} ;$
end for
end while
if $Q \neq \varepsilon$ then
let $p:=\operatorname{first}(Q)$;
while $p \neq \perp$ do
$\hat{\sigma}:=p . \hat{\sigma} ;$
let $\left(p, p^{\prime}\right) \in P$;
$p:=p^{\prime}$;
end while
return false; shortest counterexample $\hat{\sigma}$;
else
return true;
end if

Solution of Exercise 1.6

We consider each of the fairness assumptions \mathcal{F}_{i} for $i \in\{1,2\}$:

We have $T S \models_{\mathcal{F}_{i}} P$ iff FairTraces $_{\mathcal{F}_{i}}(T S) \subseteq P$. Because of $\nexists k . A_{k}=\{a, b\}$, each trace has to visit at least one of s_{2} or s_{4} infinitely many times.
Additionally, from some point onwards, each a-state must be followed by a state that is annotated with (at least) b.

a) $T S \models_{\mathcal{F}_{1}} P_{2}$:

- Any trace that reaches s_{4} is not \mathcal{F}_{1}-fair as α is executed only finitely many times. This is in contradiction to our $\mathcal{F}_{1, u c o n d}=\{\{\alpha\}\}$.
- Therefore $s_{3} \xrightarrow{\eta} s_{4}$ is never taken.
- Because of $\{\eta\} \in \mathcal{F}_{1, \text { strong }}$ and because η actions cannot be executed infinitely often (in fact, only once from s_{3} to s_{4}), the state s_{3} must not be visited infinitely often.
- We cannot stay in states s_{1} or s_{2} by only taking transitions $s_{1} \xrightarrow{\alpha} s_{1}$ and $s_{2} \xrightarrow{\alpha} s_{2}$ because of the enabled γ transitions to s_{0} or s_{1}, respectively.
- As β is enabled in s_{0}, all \mathcal{F}_{1}-fair paths visit exactly s_{0}, s_{1} and s_{2} infinitely often.

Therefore FairTraces $\mathcal{F}_{1}(T S) \subseteq P$ and $T S \models \mathcal{F}_{1} P$.
b) $T S \not \models_{\mathcal{F}_{2}} P$:

Consider the path $\pi=\left(s_{0} s_{2} s_{3} s_{1}\right)^{\omega}$ with its corresponding trace $\sigma=(\{a\}\{a, b\} \emptyset\{b\})^{\omega}$.
We have $\pi \in$ FairPath $\mathcal{F}_{2}(T S)$, but $\sigma \notin P$.
\Longrightarrow FairTraces $\mathcal{F}_{2}(T S) \nsubseteq P$.

Solution of Exercise 1.7

Realizable fairness assumptions:
a) $\mathcal{F}_{1}=(\{\{\alpha\}\},\{\{\delta\}\},\{\{\alpha, \beta\}\})$ is not realizable fair. Consider the states s_{1} and s_{4}. There are no \mathcal{F}_{1} fair path fragments starting from s_{1} or s_{4}, as on each such path fragment, α transitions never occur. This violates the unconditional fairness constraint $\{\{\alpha\}\}$.
b) $\mathcal{F}_{2}=(\{\{\delta, \alpha\}\},\{\{\alpha, \beta\}\},\{\{\gamma\}\})$ is realizable fair, as the $\operatorname{SCC}\left\{s_{1}, s_{4}\right\}$ is reachable from every state and $\left(s_{1}, s_{4}\right)^{\omega}$ is a \mathcal{F}_{2} fair path fragment.
c) $\mathcal{F}_{3}=(\{\{\alpha, \delta\},\{\beta\}\},,\{\{\alpha, \beta\}\}\{\{\gamma\}\})$ is realizable fair. Consider the same $\operatorname{SCC}\left\{s_{1}, s_{4}\right\}$ and again the path fragment $\left(s_{1}, s_{4}\right)^{\omega}$.

Solution of Exercise 1.8

let's consider F_{1}.
The unconditional fairness on $\{\beta\}$ excludes the paths in which states S_{4} and S_{5} are reached.
The strong fairness on $\{\gamma\}$ excludes the paths ending with S_{0}^{ω} or S_{3}^{ω}.
The strong fairness on $\{\delta\}$ excludes the paths in which s_{1} is visited infinitely many times because otherwise the state s_{4} is reached.

The weak fairness on $\{\alpha\}$ excludes the paths cycling between states s_{0} and s_{2}.
Thus the only fair paths are those the visit infinitely often the states s_{0}, s_{2} and s_{3}, but not s_{1}. in the light of the observations above we can conclude that $T S \nvdash_{F_{1}} E_{1}$ and $T S \vDash_{F_{1}} E_{2}$.
let's consider F_{2}.
The missing strong fairness on $\{\delta\}$ allows also the paths in which state s_{1} is visited infinitely often.
However, the paths in which only the states s_{0}, s_{2} and s_{3} are still fair, so we have to conclude, as far F_{1} : $T S \nvdash_{F_{2}} E_{1}$ and $T S \vDash_{F_{2}} E_{2}$.
let's consider F_{3}.
The missing weak fairness on $\{\alpha\}$ allows, in addition to the ones fair for F_{2}, the paths that visit infinitely often only the states s_{0} and s_{1}.
Thus the only fair paths are those the visit infinitely often the states s_{0}, s_{2} and s_{3}, but not s_{1}.
Thus, we conclude that $T S \nvdash_{F_{3}} E_{1}$ and $T S \nvdash_{F_{3}} E_{2}$.

Solution of Exercise 1.9

a) Formally, we define the NFA $A_{n}=\left(Q_{n}, \sum, \delta_{n}, Q_{0}, F\right)$ where

- $Q_{n}=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$
- transition relation defined by δ_{n} :

$$
\begin{array}{ll}
\delta_{n}\left(q_{0}, A\right)=\left\{q_{0}\right\} & \delta_{n}\left(q_{0}, B\right)=\left\{q_{0}, q_{1}\right\} \\
\delta_{n}\left(q_{0}, A\right)=\left\{q_{q_{i}+1}\right\} \text { for } 0<i<n & \delta_{n}\left(q_{i}, B\right)=\left\{q_{i+1}\right\} \text { for } 0<i<n
\end{array}
$$

- the set of initial states: $Q_{0}=\left\{q_{0}\right\}$
- $F=\left\{q_{n}\right\}$

This can also be outlined as follows:

b) Applying the powerset construction to the NFA A_{n} yields the DFA $A_{n}^{\prime}=\left(2^{Q_{n}}, \sum, \delta_{n}^{\prime},\left\{q_{0}\right\}, F_{n}^{\prime}\right)$ where

- the transition function δ_{n}^{\prime} is defined (for $k \in\{0, \ldots, n\}$) as follows:

$$
\begin{aligned}
& \delta_{n}^{\prime}\left(\left\{q_{0}, q_{i 1}, \ldots, q_{i k}\right\}, A\right)=\left\{q_{i j+1} \mid i_{j}<n, j \in\{1, \ldots, k\}\right\} \cup\left\{q_{0}\right\} \\
& \delta_{n}^{\prime}\left(\left\{q_{0}, q_{i 1}, \ldots, q_{i k}\right\}, A\right)=\left\{q_{i j+1} \mid i_{j}<n, j \in\{0, \ldots, k\}\right\} \cup\left\{q_{0}\right\}
\end{aligned}
$$

- The acceptance set is given by $F_{n}^{\prime}=\left\{Q^{\prime} \in 2^{Q_{n}} \mid q_{n} \in Q^{\prime}\right\}$

