Model Checking Exercises with (Some) Solutions

Teacher: Luca Tesei

Master of Science in Computer Science - University of Camerino

Contents

1 Linear Temporal Logic

1 Linear Temporal Logic

Exercise 1.1. Consider the following LTL formulas:

$$\varphi_1 = \Box(a \lor b) \qquad \varphi_2 = (\Box a) \lor (\Box b)$$

Let $\Sigma = 2^{AP}$ and $AP = \{a, b\}$.

- 1. Derive two NBAs \mathcal{A}_1 and \mathcal{A}_2 on the alphabet Σ for the formulas φ_1 and φ_2 . More precisely, it must hold $\mathcal{L}_{\omega}(\mathcal{A}_1) = \mathcal{L}_{\omega}(\varphi_1)$ and $\mathcal{L}_{\omega}(\mathcal{A}_2) = \mathcal{L}_{\omega}(\varphi_2)$.
- 2. Construct a GNBA \mathcal{G} that accepts the intersection of the two languages of \mathcal{A}_1 and \mathcal{A}_2 , i.e. $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2).$

Exercise 1.2. Consider the following transition system TS on $AP = \{a, b\}$:

and the following LTL formula $\varphi = \Box \diamondsuit \neg a$.

- 1. Derive an NBAs \mathcal{A} for the formula $\neg \varphi$, i.e. such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\neg \varphi)$.
- 2. Tell whether or not it holds $TS \models \varphi$ by constructing $TS \otimes \mathcal{A}$ and checking the proper persistence property related to the accepting states of \mathcal{A} . If $TS \not\models \varphi$ then provide a counterexample, i.e. give a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi$. Hint: it is not required to construct all the transition system $TS \otimes \mathcal{A}$, but only the reachable portion that is needed to answer to the question.

Exercise 1.3. Consider the following transition system TS on $AP = \{a, b, c\}$.

- 1. Decide, for each LTL formula φ_i below, whether or not $TS \models \varphi_i$. Justify your answers! If $TS \not\models \varphi_i$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.
 - $\begin{array}{ll} \varphi_1 = \Diamond b & \varphi_2 = \bigcirc \bigcirc (c \lor b) \\ \varphi_3 = \Diamond (a \land b \land c) & \varphi_4 = (\bigcirc \bigcirc \bigcirc a) \lor (\Diamond \Box a) \\ \varphi_5 = (a \lor b) \mathcal{U} (a \lor c) & \varphi_6 = \Box (b \longrightarrow (\bigcirc \Diamond c)) \end{array}$

2. Consider the following fairness assumptions written as LTL formulas:

 $\psi_1^{\text{fair}} = \Box \diamondsuit c \longrightarrow \Box \diamondsuit b \qquad \psi_2^{\text{fair}} = \Box \diamondsuit a \qquad \psi_3^{\text{fair}} = \Box \diamondsuit b \longrightarrow ((\Box \diamondsuit a) \land (\Box \diamondsuit c))$

- (a) (2 points) Decide whether or not $TS \models_{\text{fair}} \varphi_1$ under the three different fairness conditions $\psi^i_{\text{fair}}, i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_1$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_1$ and arguing that π is fair with respect to ψ^i_{fair} .
- (b) (2 points) Decide whether or not $TS \models_{\text{fair}} \varphi_6$ under the three different fairness conditions $\psi^i_{\text{fair}}, i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_6$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_6$ and arguing that π is fair with respect to ψ^i_{fair} .

Exercise 1.4. Consider the transition system TS over the set of atomic proposition $AP = \{a, b, c\}$:

Decide for each of the LTL formulas φ_i holds. Justify your answer!

If $TS \nvDash \varphi_i$, provide a path $\pi \in paths(TS)$ such that $\pi \nvDash \varphi_i$.

$$\begin{array}{ll} \varphi_1 = \Diamond \Box c & \varphi_4 = \Box a \\ \varphi_2 = \Box \Diamond c & \varphi_5 = a \mathcal{U} \Box (b \lor c) \\ \varphi_3 = \bigcirc \neg c \longrightarrow \bigcirc \bigcirc c & \varphi_6 = (\bigcirc \bigcirc b) \mathcal{U} (b \lor c) \end{array}$$

Exercise 1.5. Let $AP = \{a, b, c\}$. Consider the transition system TS over AP outlined below

and the LTL fairness assumption $fair = (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c) \land (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b).$ a) Specify the fair paths of TS!

b) Decide for each of the following LTL formulas φ_i whether it holds $TS \models_{fair} \varphi_i$:

 $\varphi_1 = \bigcirc \neg a \longrightarrow \Diamond \Box a \qquad \varphi_2 = b\mathcal{U} \Box \neg b \qquad \varphi_3 = b\mathcal{W} \Box \neg b$

In case $TS \nvDash_{fair} \varphi_i$, indicate a path $\pi \in \in FairPaths(TS)$ for which $\pi \nvDash \varphi$ holds.

Exercise 1.6. Consider the following LTL formula:

$$\varphi = \Box(b \longrightarrow (b\mathcal{U}(a \land \neg b)))$$

- 1. Put the formula $\neg \varphi$ in Positive Normal Form containing the weak until operator \mathcal{W} as dual of the until.
- 2. Convert $\neg \varphi$ into an equivalent LTL formula ψ that is constructed according to the following grammar:

 $\Phi ::= true \mid false \mid \Phi \land \Phi \mid \neg \Phi \mid \bigcirc \Phi \mid \Phi \mathcal{U} \Phi$

then, construct the set $closure(\psi)$ and derive at least one set B that is elementary set with respect to $closure(\psi)$.

Exercise 1.7. Transform the LTL-formula $\varphi = \neg \Diamond (\neg (a\mathcal{U}c) \longrightarrow ((b \land \neg d)\mathcal{U}a))$ in positive normal form, once using the W-operator and once using the R-operator.

Exercise 1.8. We consider model checking of ω -regular LT properties which are defined by LTL formulas. Therefore let φ_1 and φ_2 be as follows:

 $\varphi_1 = \Box \diamondsuit a \longrightarrow \Box \diamondsuit b$

 $\varphi_2 = \Diamond (a \land \bigcirc a)$

Further, our model is represented by the transition system TS over $AP = \{a, b\}$ which is given as outlined on the right. We check whether $TS = \varphi_i$ for i = 1, 2 using the nested depth-first search algorithm from the lecture. Therefore proceed as follows:

a) Derive an NBA A_i for the LTL formula $\neg \varphi_i$ (for i = 1, 2). More precisely, for A_i it must hold $L_{\omega}(A_i) = L_{\omega}(\neg \varphi_i).$

Hint: Four, respectively three states suffice.

b) Outline the reachable fragment of the product transition system $TS \otimes A_i$.

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $TS \otimes A_i$.

d) Provide the counterexample computed by the algorithm if $TS \nvDash \varphi_i$.

Solutions

Solution of Exercise 1.1

1. $\sum = AP = (2^{AP})^{\omega}$

For the formula $\varphi_1 = \Box(a \lor b)$ the NBA \mathcal{A}_∞ is:

Where:

 $\begin{aligned} (a \lor b) &\equiv \{\{a\}, \{b\}, \{a, b\}\} \\ (\neg a \lor \neg b) &\equiv \{\{\}\} \\ F_1 &= \{q_0\} \end{aligned}$

For the formula $\varphi_2 = (\Box a) \lor (\Box b)$ the NBA \mathcal{A}_{\in} is:

Where:

- $\begin{aligned} a &\equiv \{\{a\}, \{a, b\}\} \\ \neg a &\equiv \{\{\}, \{b\}\} \\ b &\equiv \{\{b\}, \{a, b\}\} \\ \neg b &\equiv \{\{b\}, \{a, b\}\} \\ F_2 &= \{\{p_0\}, \{r_0\}\} \end{aligned}$
- 2. Let us construct $G=(\{q_0,q_1\}\times\{p_0,p_1,r_0,r_1\},\sum,...)$

where

$$\begin{split} & a \wedge (a \vee b) \equiv \{\{a\}, \{a, b\}\} \\ & b \wedge (a \vee b) \equiv \{\{b\}, \{a, b\}\} \\ & \text{The accepts sets are: } \mathcal{F} = \{\{q_0, p_0\}, \{q_0, p_1\}, \{q_0, r_0\}, \{q_0, r_1\}, \} \\ & \{\{q_1, p_0\}, \{r_1, q_0\}\} \text{ are not reachable.} \end{split}$$

Solution of Exercise 1.2

1. We first note the $\neg \varphi \equiv \neg \Box \Diamond \neg a \equiv \Diamond \Box a$ An NBA \mathcal{A} for $\Diamond \Box a$ is the following

where: $a \equiv \{\{a\}, \{a, b\}\}\$ $\neg a \equiv \{\{\}, \{b\}\}\$ $true \equiv \{\{a\}, \{b\}, \{a, b\}, \{a, b\}, \{\}\}\$ $F = \{q_1\}$

2. Let's start constructing the product $TS\otimes A$

The initial state are those (s_0, x) where $x \in \delta(q_0, L(s_0)) =$

 $\begin{array}{l} \delta(q_0,\{a\}) = \\ \{q_0,q_1\} \end{array}$

that is, there are two initial states: (s_0, q_0) and (s_0, q_1)

 $from(s_0, q_0):$ $s_0 \to s_1, \delta(q_0, L(s_1)) =$ $\delta(q_0, \{a\}) = \{q_0, q_1\}$ $s_0 \to s_2, \delta(q_0, L(s_2)) =$

 $\delta(q_0, \{b\}) = \{q_0\}$

 $from(s_1, q_1): \\ s_1 \to s_1, \delta(q_1, L(s_1)) = \\ \delta(q_1, \{a\}) = \{q_1\}$

 $from(s_1, q_0):$ $s_1 \to s_1, \delta(q_0, L(s_1)) = \delta(q_0, \{a\}) = \{q_0, q_1\}$

We can stop constructing the product because it is now clear that there is a reachable strongly connected component (SCC) in which q_1 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A) \neq \emptyset$, thus there is a behaviour in TS that violates the formula $\varphi = \Box \Diamond \neg a$.

Thus $TS \nvDash \varphi$ and a counterexample is the path $\pi: s_0(s_1)^\omega$

Solution of Exercise 1.3

1. $TS \nvDash \diamondsuit b$

Counterexample: $\pi = (s_0 s_1)^{\omega}$

 $TS \vDash \bigcirc \bigcirc (c \lor b)$

Because the following are the all the possible prefixes of paths of TS:

 $s_0 \ s_1 \ s_0 \dots$ $s_0 \ s_2 \ s_3 \dots$ $s_3 \ s_4 \ s_3$ $s_3 \ s_5 \ s_3$ third state of each paths (s_0 and s_3) satisfies ($c \lor b$)

 $TS \nvDash \diamondsuit (a \land b \land c)$

Because all the runs that start in s_3 never reach the state s_2 that is the only one in which $a \wedge b \wedge c$ is true

 $TS \nvDash (\bigcirc \bigcirc \bigcirc a) \lor (\diamondsuit \Box a)$

Because of the run $s_3 s_4 s_3 s_5 (s_3 s_5)^{\omega}$ in which the first " s_5 " $\nvDash a$ and $(s_3 s_5)^{\omega} \nvDash (\Diamond \Box a)$

$$\begin{split} TS &\models (a \lor b) \, \mathcal{U} \, (a \lor c) \\ \text{In all runs:} \\ s_0 \dots, s_0 &\models (a \lor b) \, \mathcal{U} \, (a \lor c) \\ s_3 \, s_4 \, \dots \, s_3 &\models (a \lor b) , \, s_4 &\models (a \lor b) \\ s_3 \, s_5 \, \dots \, s_3 &\models (a \lor b) , \, s_5 &\models (a \lor b) \end{split}$$

 $TS \nvDash \Box(b \longrightarrow (\bigcirc \diamondsuit c))$

Because of the runs $s_0 \dots s_0 s_2 s_3 s_4 (s_3 s_4)^{\omega}$ in which: $s_2 = b s_3 = \Diamond c$ and $(s_3 s_4)^{\omega}$ is never c

2. • In case of fairness $\psi_1^{\text{fair}} = \Box \Diamond c \longrightarrow \Box \Diamond b$ the path $(s_0 \ s_1)^{\omega}$ is not fair, thus $TS \models_{\text{fair}} \varphi_1$ under the fairness condition ψ_1^{fair} .

In case of fairness $\psi_2^{\text{fair}} = \Box \diamondsuit a$ the runs $s_0 \dots s_0 s_2 s_3 \dots s_3 (s_3 s_4)^{\omega}$ are not fair. This does not effect the satisfaction of φ_1 : $TS \nvDash_{\text{fair}} \varphi_1$ because the run $(s_0 s_1)^{\omega}$ is fair for ψ_2^{fair}

In case of ψ_3^{fair} : $\Box \diamondsuit b \longrightarrow ((\Box \diamondsuit a) \land (\Box \diamondsuit c))$ the runs $s_0 \dots s_0 s_2 s_3 \dots s_3 (s_3 s_4)^{\omega}$, $s_0 \dots s_0 s_2 s_3 \dots s_3 (s_3 s_5)^{\omega}$ are not fair. This, again, does not effect the satisfaction of φ_1 . $TS \nvDash_{\text{fair}} \varphi_1$ under ψ_3^{fair} because $(s_0 s_1)^{\omega}$ is fair in ψ_3^{fair}

In the previous case we discussed the runs that are not fair under ψ₁^{fair}, ψ₂^{fair}, ψ₃^{fair}.
 TS ⊭_{fair} φ₆ with ψ₁^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₁^{fair}
 TS ⊭_{fair} φ₆ with ψ₂^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₂^{fair}
 TS ⊨_{fair} φ₆ with ψ₃^{fair} because the paths s₀ ... s₀ s₂ (s₃ s₄)^ω are fair for ψ₁^{fair}

Solution of Exercise 1.4

We have to decide the validity of the given LTL formulas wrt. the transition system on the right. This yields:

 $\begin{array}{ll} \varphi_1 = \Diamond \Box c & no \ s_2 s_4 s_2 s_4 \dots \\ \varphi_2 = \Box \Diamond c & yes \\ \varphi_3 = \bigcirc \neg c \longrightarrow \bigcirc \bigcirc c & yes \\ \varphi_4 = \Box a & no \ s_2 \dots \\ \varphi_5 = a \mathcal{U} \Box (b \lor c) & yes \\ \varphi_6 = (\bigcirc \bigcirc b) \mathcal{U} (b \lor c) & no \ s_1 s_4 s_2 \dots \end{array}$

Solution of Exercise 1.5

a) The fair paths of TS are defined by

$$fair = (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c) \land (\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b) :$$

The conclusion in the first conjunction $(\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg c)$ is fulfilled by every path, since no state in TS is labeled with c. Formally, we have $\Box \neg c \longrightarrow \Box \diamondsuit \neg c$ and therefore our claim holds. Consider the second part $(\Box \diamondsuit (a \land b) \longrightarrow \Box \diamondsuit \neg b)$ of fair: Its premise is fulfilled only on the path $\pi = s_3^{\omega}$. But $\pi \nvDash \Box \diamondsuit \neg b$. Therefore π is the only unfair path in TS:

$$FairPaths(TS) = \mathcal{L}_{\omega}((s_0s_1)^{\omega} + (s_0s_1)^+ s_2^{\omega} + s_3^+ s_4 s_5^{\omega})$$

b)

• $\varphi_1 = \bigcirc \neg a \longrightarrow \Diamond \Box a$ Consider the path $\pi_1 = s_3 s_4 s_5^{\omega} \in FairPaths(TS)$. For its corresponding trace

 $trace(\pi_1) = \sigma_1 = \{a, b\} \{b\} \emptyset^{\omega}$

it holds $\sigma_1 \in Words(\bigcirc \neg a)$, but $\sigma_1 \notin Words(\Diamond \Box a)$. $\Rightarrow \sigma_1 \notin Words(\bigcirc \neg a \longrightarrow \Diamond \Box a)$ $\Rightarrow TS \nvDash_{fair} \bigcirc \neg a \longrightarrow \Diamond \Box a$

• $\varphi_2 = b\mathcal{U} \Box \neg b$ Consider the path $\pi_2 = (s_0 s_1)^{\omega} \in FairPaths(TS)$. Here, we have

 $trace(\pi_2) = \sigma_2 = (\{a, b\}\{b\})^{\omega}$

and $\sigma_2 \nvDash_{fair} b\mathcal{U} \Box \neg b$ since there exists no $i \ge \text{s.t.} \sigma_2[i...] \vDash \Box \neg b$. $\Rightarrow TS \nvDash_{fair} b\mathcal{U} \Box \neg b$

• $\varphi_3 = bW \Box \neg b$ It holds $TS \models_{fair} \varphi_1$

Solution of Exercise 1.6

- 1. $\neg \varphi = \neg \Box (b \longrightarrow (b \mathcal{U} (a \land \neg b))) \equiv$ $\equiv \diamond \neg (b \longrightarrow (b \mathcal{U} (a \land \neg b))) \equiv$ $\equiv \diamond \neg (\neg b \lor (b \mathcal{U} (a \land \neg b))) \equiv$ $\equiv \diamond (\neg \neg b \land \neg (b \mathcal{U} (a \land \neg b))) \equiv$ $\equiv \diamond (b \land (b \land \neg (a \land \neg b)) \mathcal{W} (\neg b \land \neg (a \land \neg b))) \equiv$ $\equiv \diamond (b \land (b \land (\neg a \lor b)) \mathcal{W} (\neg b \land (\neg a \lor b)))$ the last form is in PNF.
- 2. As in the previous case $\neg \varphi \equiv \diamond (b \land \neg (b\mathcal{U}(a \land \neg b)))$ So $\neg \varphi \equiv true\mathcal{U}(b \land \neg (b\mathcal{U}(a \land \neg b)))$ Let $\varphi \equiv true\mathcal{U}(b \land \neg (b\mathcal{U}(a \land \neg b)))$ closure(ψ) = { $true, a, b, a \land \neg b, (b\mathcal{U}(a \land \neg b)), b \land \neg ((b\mathcal{U}(a \land \neg b))), \varphi$ } \cup { $false, \neg a, \neg b, \neg (a \land \neg b), \neg (b\mathcal{U}(a \land \neg b)), \neg (b \land \neg ((b\mathcal{U}(a \land \neg b)))), \neg \varphi$ } an example of elementary set is $B = \{true, a, \neg b, (b\mathcal{U}(a \land \neg b)), \neg (b \land \neg ((b\mathcal{U}(a \land \neg b)))), \varphi\}$

Solution of Exercise 1.7

We have the following LTL formula:

$$\begin{split} \varphi &= \neg \diamondsuit \left(\neg (a \mathsf{U} c) \to ((b \land \neg d) \mathsf{U} a) \right) \equiv \Box \neg \left((a \mathsf{U} c) \lor ((b \land \neg d) \mathsf{U} a) \right) & (* \diamondsuit \varphi \equiv \neg \Box \neg \varphi \text{ and } \varphi \to \psi \equiv \neg \varphi \lor \psi^*) \\ &\equiv \Box \left(\neg (a \mathsf{U} c) \land \neg ((b \land \neg d) \mathsf{U} a) \right) & (* \operatorname{deMorgan} *) \end{split}$$

a) PNF with W–operator (weak until): Rewrite rule for until: $\neg(\varphi \cup \psi) \rightsquigarrow (\varphi \land \neg \psi) W(\neg \varphi \land \neg \psi)$. We obtain for φ as above:

$$\begin{split} \varphi &\equiv \Box \big((a \wedge \neg c) \mathsf{W} (\neg a \wedge \neg c) \wedge (b \wedge \neg d \wedge \neg a) \mathsf{W} (\neg (b \wedge \neg d) \wedge \neg a) \big) \\ &\equiv \big((a \wedge \neg c) \mathsf{W} (\neg a \wedge \neg c) \wedge (b \wedge \neg d \wedge \neg a) \mathsf{W} ((\neg b \lor d) \wedge \neg a) \big) \mathsf{W} \mathsf{false} \end{split}$$

b) PNF with R–operator (release): Rewrite rule for until: $\neg(\varphi U\psi) \rightsquigarrow \neg \varphi R \neg \psi$. We obtain for φ as above:

$$\begin{split} \varphi &\equiv \Box \left(\neg a \mathsf{R} \neg c \land \neg (b \land \neg d) \mathsf{R} \neg a \right) \\ &\equiv \mathsf{falseR} (\neg a \mathsf{R} \neg c \land (\neg b \lor d) \mathsf{R} \neg a) \end{split}$$

Solution of Exercise 1.8

a) The automata accepting the complement languages of φ_1 and φ_2 are:

b) The reachable fragments of $T \otimes A_i$ for i = 1, 2 are as follows:

c) Sketch the main steps of the nested depth-first search algorithm for the persistency check on $T \otimes A_i$: We check for the persistence property "eventually forever $\neg F$ ".

1. Constructed the product $T \otimes A_1$, we can see that there is a reachable strongly connected component (SCC) in which q_1 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A_1) \neq \emptyset$, thus there is a behaviour in TS that violates the formula φ_1 . So, $TS \nvDash \varphi_1$

2. Constructed the product $T \otimes A_2$, we can see that there not a reachable strongly connected component (SCC) in which q_0 is visited infinitely often.

This means that $L_{\omega}(TS \otimes A_2) = \emptyset$, thus there is not a behaviour in TS that violates the formula φ_2 .

```
So, TS \vDash \varphi_2
```

d)

```
TS \nvDash \varphi_1. counterexample: \langle s_0, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_3, q_1 \rangle, \langle s_2, q_1 \rangle, \langle s_1, q_2 \rangle, \langle s_3, q_1 \rangle
TS \vDash \varphi_2.
```