Model Checking Exercises with (Some) Solutions

Teacher: Luca Tesei
Master of Science in Computer Science - University of Camerino

Contents

1 Regular Properties 2

1 Regular Properties

Exercise 1.1. Consider the following transition system TS:

and the regular safety property

$$
P_{\text {safe }}=\begin{aligned}
& \text { "always if } a \text { is valid and } b \wedge \neg c \text { was valid somewhere before, } \\
& \text { then } a \text { and } b \text { do not hold thereafter at least until } c \text { holds" }
\end{aligned}
$$

As an example, it holds:

$$
\begin{aligned}
\{b\} \emptyset\{a, b\}\{a, b, c\} & \in \operatorname{pref}\left(P_{\text {safe }}\right) \\
\{a, b\}\{a, b\} \emptyset\{b, c\} & \in \operatorname{pref}\left(P_{\text {safe }}\right) \\
\{b\}\{a, c\}\{a\}\{a, b, c\} & \in \operatorname{BadPref}\left(P_{\text {safe }}\right) \\
\{b\}\{a, c\}\{a, c\}\{a\} & \in \operatorname{BadPref}\left(P_{\text {safe }}\right)
\end{aligned}
$$

Questions:
(a) Define an NFA A such that $L(A)=\operatorname{MinBadPref}\left(P_{\text {safe }}\right)$
(b) Decide whether $T S \models P_{\text {safe }}$ using the $T S \otimes A$ construction.Provide a counterexample if $T S \not \vDash P_{\text {safe }}$

Exercise 1.2. Consider the following transition system TS:

and the regular safety property
$P_{\text {safe }}=$ "always if b is holding and a was held somewhere before, then c must not hold in the position just after the current b"

1. Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A})=\operatorname{MinBadPref}\left(P_{\text {safe }}\right)$
2. Decide whether $\mathrm{TS} \models P_{\text {safe }}$ using the $\mathrm{TS} \otimes \mathcal{A}$ construction. Provide a counterexample if $\mathrm{TS} \not \models$ $P_{\text {safe }}$

Exercise 1.3. Find nondeterministic Büchi automata that accept the following ω-regular languages:
a) $L_{1}=\left\{\sigma \in\{A, B\}^{\omega} \mid\right.$ contains $A B A$ infinitely often, but $A A$ only finitely often $\}$
b) $L_{2}=L_{\omega}\left((A B+C) *((A A+B) C)^{\omega}+(A * C)^{\omega}\right)$

Exercise 1.4. Consider the following $N B A A_{1}$ and A_{2} over the alphabet $\sum=\{A, B, C\}$:

Find ω-regular expressions for the languages accepted by A_{1} and A_{2}, respectively.

Exercise 1.5. Consider the following NBA \mathcal{A}_{1} over the alphabet $\Sigma=\{A, B, C\}$.

1. Write an ω-regular expression for the language accepted by \mathcal{A}_{1}.

Exercise 1.6. Prove or disprove the following equivalences for ω-regular expressions:
a) $\left(E_{1}+E_{2}\right) \cdot F^{\omega} \equiv E_{1} \cdot F^{\omega}+E_{2} \cdot F^{\omega}$
b) $E .\left(F_{1}+F_{2}\right)^{\omega} \equiv E . F_{1}^{\omega}+E . F_{2}^{\omega}$
c) $E .\left(F . F^{*}\right)^{\omega} \equiv E . F^{\omega}$
d) $\left(E^{*} \cdot F\right)^{\omega} \equiv E^{*} \cdot F^{\omega}$

Here, $E, E 1, E 2, F, F 1, F 2$ denote regular expressions with $\epsilon \notin L(F) \cup L(F 1) \cup L(F 2)$.
Exercise 1.7. Show that the class of languages accepted by $D B A$ is not closed under complementaion.

Exercise 1.8. Consider the GNBA outlined on the right with acceptance sets $F 1=q 1$ and $F 2=q 2$. Construct an equivalent NBA using the transformation introduced in the lecture.

Exercise 1.9. Consider the following GNBA:

where the alphabet $\Sigma=\{A, B\}$ and the acceptance sets are $\mathcal{F}=\left\{F_{1}, F_{2}\right\}$ with $F_{1}=\left\{q_{1}\right\}$ and $F_{2}=\left\{q_{2}\right\}$.

1. Construct an equivalent NBA \mathcal{A} using the transformation introduced in the lectures.
2. Write an ω-regular expression denoting exactly $\mathcal{L}_{\omega}(\mathcal{A})$.

Exercise 1.10. Provide $N B A A 1$ and $A 2$ for the languages given by the expressions $(A C+B)^{*} B^{\omega}$ and $\left(B^{*} A C\right)^{\omega}$ and apply the product construction (using GNBA) to obtain an NBA A with $L_{\omega}(A)=$ $L_{\omega}\left(A_{1}\right) \cap L_{\omega}\left(A_{2}\right)$. Justify, why $L_{\omega}(G)=\emptyset$ where G denotes the $G N B A$ accepting the intersection.

Exercise 1.11. Draw nondeterministic Büchi automata that accept the following ω-regular languages:

1. $\mathcal{L}_{1}=\left\{\sigma \in\{A, B, C\}^{\omega} \mid \sigma\right.$ contains C only finitely many times and contains $A B$ infinitely many times
2. $\mathcal{L}_{2}=(A B+A C)^{*} A B C(B C A+A C B)^{\omega}+(A+B)^{*}(C B)^{\omega}$

Solutions

Solution of Exercise 1.1

- The NFA that accepts the set of minimal bad prefixes:

- First we apply the $T S \otimes \mathcal{A}$ construction which yields:

A counterexample to $T S \models P_{\text {safe }}$ is given by the following initial path fragment in $T S \otimes \mathcal{A}$:

$$
\pi_{\otimes}=\left\langle s_{0}, q_{1}\right\rangle\left\langle s_{3}, q_{2}\right\rangle\left\langle s_{1}, q_{2}\right\rangle\left\langle s_{4}, q_{2}\right\rangle\left\langle s_{5}, q_{3}\right\rangle
$$

By projection on the state component, we get a path in the underlying transition system:

$$
\pi=s_{0} s_{3} s_{1} s_{4} s_{5} \text { with trace }(\pi)=\{a, b\}\{a, c\}\{a, b, c\}\{a, c\}\{a, b\}
$$

Obviously, trace $\left.(\pi) \in \operatorname{BadPref}^{(} P_{\text {safe }}\right)$, so we have $\operatorname{Traces}_{\text {fin }}(T S) \cap \operatorname{BadPref}\left(P_{\text {safe }}\right) \neq \emptyset$. By lemma 3.25 , this is equivalent to $T S \nLeftarrow P_{\text {safe }}$.

Solution of Exercise 1.2

1. An NFA accepting the minimal bad prefixes for the property is \mathcal{A} :

where:
$\neg a \equiv\{\},\{b\},\{c\},\{b, c\}\}$
$a \equiv\{\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$
The union of $\neg a$ and a is $2^{A P}$
$\neg b \equiv\{\},\{a\},\{c\},\{a, c\}\}$
$b \equiv\{\{b\},\{a, b\},\{b, c\},\{a, b, c\}\}$
The union of $\neg b$ and b is $2^{A P}$
$c \equiv\{\{c\},\{a, c\},\{b, c\},\{a, b, c\}\}$
$b \wedge \neg c \equiv\{\{b\},\{a, b\}\}$
$\neg b \wedge \neg c \equiv\{\},\{a\}\}$
The union of $c, b \wedge \neg c$ and $\neg b \wedge \neg c$ is $2^{A P}$

So the NFA is non-blocking apart from state q_{3}.
2. To apply the product $T S \otimes \mathcal{A}, \mathcal{A}$ should be non-blocking. Our \mathcal{A} is deterministic and becomes non-blocking if we add a state q_{4} and let

or alternatively we can add a self-loop on q_{3}. In this case the automaton would recognize all bad prefixes, not just the minimal ones. Let us consider \mathcal{A}^{\prime} made on one of these two ways.

Let's construct the product:
$L\left(s_{0}\right)=\{b, c\} \delta\left(q_{0},\{b, c\}\right)=\left\{q_{0}\right\}$
So the unique initial state of $T S \otimes \mathcal{A}^{\prime}$ is $<s_{0}, q_{0}>$

From $<s_{0}, q_{0}>$:

- $s_{0} \longrightarrow s_{1} L\left(s_{1}\right)=\{a\}$ $\delta\left(q_{0},\{a\}\right)=\left\{q_{1}\right\}$.
- $s_{0} \longrightarrow s_{2} L\left(s_{2}\right)=\{a, b\}$ $\delta\left(q_{0},\{a, b\}\right)=\left\{q_{1}\right\}$.

From $<s_{1}, q_{1}>$:

- $s_{1} \longrightarrow s_{3} L\left(s_{3}\right)=\{b\}$ $\delta\left(q_{1},\{b\}\right)=\left\{q_{2}\right\}$.

From $<s_{3}, q_{2}>$:

- $s_{3} \longrightarrow s_{5} L\left(s_{5}\right)=\{a, c\}$ $\delta\left(q_{2},\{a, c\}\right)=\left\{q_{3}\right\}$.
we can stop constructing $T S \otimes \mathcal{A}^{\prime}$ because we can already decide that $T S \not \vDash P_{\text {safe }}$.
Indeed in $T S \otimes \mathcal{A}^{\prime}$ a state in which q_{3} is present is reachable *. The path gives us a counter-example for the property:
$s_{0} s_{1} s_{3} s_{5} \ldots$ whose trace is $\{b, c\}\{a\}\{b\}\{a, c\} \ldots \nvdash P_{\text {safe }}$

Solution of Exercise 1.3

a) $L_{1}=\left\{\sigma \in\{A, B\}^{\omega} \mid \sigma\right.$ contains $A B A$ infinitely often, but $A A$ only finitely often $\}$

b) $L_{2}=\mathcal{L}\left((A B+C)^{*}((A A+B) C)^{\omega}+\left(A^{*} C\right)^{\omega}\right)$

Solution of Exercise 1.4

a) $L_{\omega}\left(A_{1}\right)=L_{q_{0} q_{0}} \cdot L_{q_{0} q_{0}}^{\omega}=L\left(C(A+B+C)^{+} C+A(A+B+C)^{+} A\right)^{\omega}$
b) Here, we have $F=\left\{q_{1}, q_{3}\right\}$:

$$
\begin{gathered}
L_{q_{0} q_{1}}=(B+C)^{*} A(B C)^{*} \\
L_{q_{0} q_{3}}=(B+C)^{*}\left(B+A(B C)^{*} B\right) A^{*} \\
L_{q_{1} q_{1}}=(B C) * \\
L_{q_{3} q_{3}}=A *
\end{gathered}
$$

The language accepted by A_{2} then is:

$$
\begin{aligned}
L_{\omega}\left(A_{2}\right)= & \cup_{q \in F, q_{0} \in Q_{0}} L_{q_{0} q} \cdot\left(L_{q, q} \backslash\{\epsilon\}\right)^{\omega} \\
& =L_{q_{0} q_{1}} \cdot\left(L_{q_{1}, q_{1}} \backslash\{\epsilon\}\right)^{\omega} \cup L_{q_{0} q_{3}} \cdot\left(L_{q_{3}, q_{3}} \backslash\{\epsilon\}\right)^{\omega} \\
= & \left.L_{\omega}\left(\left[(B+C)^{*} A(B C)^{*}\right] \cdot\left[(B C)^{+}\right)\right]^{\omega}+\left[(B+C)^{*}\left(B+A(B C)^{*} B\right) A^{*}\right] \cdot\left[A^{+}\right)\right]^{\omega}
\end{aligned}
$$

Solution of Exercise 1.5

Let's use the procedure given in the lecture slides.

$$
\begin{aligned}
& L_{q_{0} q_{1}}=\left((A+B)^{*}(C C)^{*}\right) C((A+B) C)^{*} \\
& L_{q_{0} q_{3}}=\left((A+B)^{*}(C C)^{*}\right) C A C^{*}+\left((A+B)^{*}(C C)^{*}\right) C((A+B) C)^{*} B C^{*} \\
& L_{q_{1} q_{1}}=\left(((A+B) C)^{*} \Longrightarrow L_{q_{1} q_{1}} \backslash\{\varepsilon\}=((A+B) C)^{+}\right. \\
& L_{q_{3} q_{3}}=C^{*} \Longrightarrow L_{q_{3} q_{3}} \backslash\{\varepsilon\}=C^{+}
\end{aligned}
$$

Then $L_{\omega}\left(\mathcal{A}_{\infty}\right)=\left((A+B)^{*}(C C)^{*}\right) C((A+B) C)^{\omega}+\left[\left((A+B)^{*}(C C)^{*}\right) C A C^{*}+\left((A+B)^{*}(C C)^{*}\right) C((A+\right.$ B) $\left.C)^{*} B\right] C^{\omega}$
(already simplified)

Solution of Exercise 1.6

a) $\left(E_{1}+E_{2}\right) \cdot F^{\omega} \equiv E_{1} \cdot F^{\omega}+E_{2} \cdot F^{\omega}$

True, since:

$$
\begin{aligned}
\mathcal{L}_{\omega}\left(\left(E_{1}+E_{2}\right) \cdot F^{\omega}\right) & =\mathcal{L}\left(E_{1}+E_{2}\right) \cdot \mathcal{L}(F)^{\omega} \\
& =\left(\mathcal{L}\left(E_{1}\right) \cup \mathcal{L}\left(E_{2}\right)\right) \cdot \mathcal{L}(F)^{\omega} \\
& =\mathcal{L}\left(E_{1}\right) \cdot \mathcal{L}(F)^{\omega} \cup \mathcal{L}\left(E_{2}\right) \cdot \mathcal{L}(F)^{\omega} \\
& =\mathcal{L}_{\omega}\left(E_{1} \cdot F^{\omega}\right) \cup \mathcal{L}_{\omega}\left(E_{2} \cdot F^{\omega}\right) \\
& =\mathcal{L}_{\omega}\left(E_{1} \cdot F^{\omega}+E_{2} \cdot F^{\omega}\right)
\end{aligned}
$$

b) $E \cdot\left(F_{1}+F_{2}\right)^{\omega} \equiv E \cdot F_{1}^{\omega}+E \cdot F_{2}^{\omega}$

False: Consider $E=\underline{\varepsilon}$ and $F_{1}=A, F_{2}=B$ where $\underline{\varepsilon}$ denotes the language consisting of the empty word only, i.e. $\{\varepsilon\}$.
Then $\mathcal{L}_{\omega}\left(E \cdot\left(F_{1}+F_{2}\right)^{\omega}\right)=\{A, B\}^{\omega}$, but $(A B)^{\omega} \notin \mathcal{L}_{\omega}\left(E \cdot F_{1}^{\omega}+E . F_{2}^{\omega}\right)=\left\{A^{\omega}, B^{\omega}\right\}$.
c) $E .\left(F . F^{*}\right)^{\omega} \equiv E . F^{\omega}$

True, since:

$$
\begin{aligned}
\mathcal{L}_{\omega}\left(E \cdot\left(F \cdot F^{*}\right)^{\omega}\right) & =\mathcal{L}(E) \cdot \mathcal{L}\left(F \cdot F^{*}\right)^{\omega} \\
& =\mathcal{L}(E) \cdot \mathcal{L}\left(F^{+}\right)^{\omega} \\
& =\mathcal{L}(E) \cdot\left(\left\{w_{0} w_{1} w_{2} \ldots w_{k} \mid k>0 \wedge w_{i} \in \mathcal{L}(F) \text { for all } i \in\{0, \ldots, k\}\right\}\right)^{\omega} \\
& =\mathcal{L}(E) \cdot\left\{v_{1} v_{2} \ldots \mid v_{i} \in \mathcal{L}\left(F^{+}\right)\right\} \\
& =\mathcal{L}(E) \cdot\left\{w_{1,1} w_{1,2} \ldots w_{1, k_{1}} w_{2,1} \ldots w_{2, k_{2}} w_{3,1} \ldots \mid w_{i, j_{i}} \in \mathcal{L}(F) \forall i \geq 1 \wedge \forall j_{i} \in\left\{1, \ldots, k_{i}\right\}\right\} \\
& =\mathcal{L}(E) \cdot \mathcal{L}(F)^{\omega} \\
& =\mathcal{L}_{\omega}\left(E \cdot F^{\omega}\right)
\end{aligned}
$$

d) $\left(E^{*} \cdot F\right)^{\omega} \equiv E^{*} \cdot F^{\omega}$

False: Consider $E=A, F=B$. Then, $(A B)^{\omega} \in \mathcal{L}_{\omega}\left(\left(E^{*} . F\right)^{\omega}\right)$ but $(A B)^{\omega} \notin \mathcal{L}_{\omega}\left(E^{*} . F^{\omega}\right)$

Solution of Exercise 1.7

To show that the class of DBA-acceptable languages is not closed under complementation, consider the following ω-regular language over $\Sigma=\{A, B\}$:

$$
L=\mathcal{L}_{\omega}\left(\left((A+B)^{*} A\right)^{\omega}\right)
$$

It is recognizable by the following deterministic Büchi automaton:

It remains to show that its complement language $\bar{L}=\{A, B\}^{\omega} \backslash L=\mathcal{L}_{\omega}\left((A+B)^{*} B^{\omega}\right)$ cannot be recognized by a deterministic Büchi automaton.
This is proven in Theorem 4.46 in the lecture notes.

Solution of Exercise 1.8

The acceptance condition for GNBA $A=\left(Q, \sum, \delta, Q_{0}, F\right)$ with $F=\{F 1, \ldots, F n\}$ and $F i \subseteq Q$ for $(1 \leq i \leq n)$:
\mathcal{A} accepts $\alpha \in \Sigma^{\omega} \Longleftrightarrow$ ex. infinite run ρ of \mathcal{A} on α s.t. $\forall F \in \mathcal{F} .\left(\not{ }^{\omega} j \geq 0 . \rho[j] \in F\right)$

Using the construction from the lecture, we infer the following NBA

$$
\mathcal{A}^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F\right) \text { where }
$$

- $Q^{\prime}=Q \times\{1,2\}$
- $\delta^{\prime}((q, i), A)= \begin{cases}\left\{\left(q^{\prime}, i\right) \mid q^{\prime} \in \delta(q, A)\right\} & \text { if } q \notin F_{i} \\ \left\{\left(q^{\prime},(i \bmod 2)+1\right) \mid q^{\prime} \in \delta(q, A)\right\} & \text { otherwise }\end{cases}$
- $Q_{0}^{\prime}=\left\{\left(q_{0}, 1\right)\right\}$
- $F=\left\{\left(q_{1}, 1\right)\right\}$

The automaton can be outlined as follows: Using the construction from the lecture, we infer the following NBA

Solution of Exercise 1.9

1. The state space of the NBA is $\left\{q_{0}, q_{1}, q_{2}\right\} \times\{1,2\}$

where $F=\left\{q_{1}, 1\right\}$.
Eliminating the unreachable states is: \mathcal{A} :

2. An ω-regular expression for the language of \mathcal{A} is $\alpha=B^{*}(A+B)(A B)^{\omega}$

Solution of Exercise 1.10

NBA $A_{1}=\left(Q_{1}, \sum, \delta_{1}, Q_{0,1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \sum, \delta_{2}, Q_{0,2}, F_{2}\right)$ for the languages:

The corresponding GNBA are given by:
$G_{1}=\left(Q_{1}, \sum, \delta_{1}, Q_{0,1},\left\{F_{1}\right\}\right)$
$G_{2}=\left(Q_{2}, \sum, \delta_{2}, Q_{0,2},\left\{F_{1}\right\}\right)$
Applying the product construction (cf. Lemma 4.60) yields the following GNBA: $G=\left(Q_{1} \times Q_{2}, \sum, \delta, Q_{0,1} \times Q_{0,2}, \mathcal{F}\right)$ where

- $\delta((p, q), A)=\delta_{1}(p, A) \times \delta_{2}(q, A)$
- $\mathcal{F}=\left\{F_{1} \times Q_{2}\right\} \cup\left\{Q_{1} \times F_{2}\right\}=\left\{\left\{\left(p_{2}, q_{0}\right),\left(p_{2}, q_{1}\right)\right\},\left\{\left(p_{0}, q_{1}\right),\left(p_{1}, q_{1}\right),\left(p_{2}, q_{1}\right)\right\}\right\}$

The automaton G can be outlined as follows (only reachable states are outlined below):

Its acceptance component is $\mathcal{F}=\left\{\left\{\left(p_{2}, q_{0}\right)\right\},\left\{\left(p_{1}, q_{1}\right)\right\}\right\}$.
According to the acceptance condition of GBNA, G accepts an input word if and only if for each $F \in \mathcal{F}$ some states are visited infinitely often. But as soon as $\left(p_{2}, q_{0}\right)$ is visited, F_{1} is not reachable any longer.
Therefore G only accepts the empty language.
Given G, construct an equivalent NBA A :

Again, on each possible run, the state $\left(\left(p_{2}, q_{0}\right), 2\right)$ of A can be visited only once. Therefore also $L_{\omega}(A)=\emptyset$ holds.

Solution of Exercise 1.11

1. In the prefix there could be As, Bs and Cs any order, the tail should be of the form $\left(A^{+} B^{+}\right)^{\omega}=$ $A A A B B A B A A B A \ldots$

Switches from A to B infinitely many times.
2.

