Model Checking I
alias
Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics
e Synchronous Product

e Examples

e The state explosion problem

Material
Reading:

Chapter 2 of the book, pages 75-80.

More:

The slides in the following pages are taken from the material of the course “Introduction to Model Check-
ing” held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Summary: parallel operators PC2.2-3

110/131

Summary: parallel operators PC2.2-3

(pure) interleaving for TS T ||| T2

e only concurrency, no communication
e not applicable for competing systems

111/131

Summary: parallel operators PC2.2:39

(pure) interleaving for TS T ||| T2

e only concurrency, no communication
e not applicable for competing systems

synchronous message passing for TS Ty ||Syn T

e interleaving for concurrent actions
e synchronization via actions in Syn

112/131

Summary: parallel operators PC2.2:39

(pure) interleaving for TS T ||| T2

e only concurrency, no communication

e not applicable for competing systems
synchronous message passing for TS Ty ||$yn73

e interleaving for concurrent actions

e synchronization via actions in Syn
interleaving for program graphs P; ||| P

e interleaving for concurrent actions
e communication via shared variables

113/131

Summary: parallel operators PC2.2:39

(pure) interleaving for TS T ||| T2

e only concurrency, no communication

e not applicable for competing systems
synchronous message passing for TS Ty ||$yn73

e interleaving for concurrent actions

e synchronization via actions in Syn

interleaving for program graphs P; ||| P

e interleaving for concurrent actions

e communication via shared variables
channel systems: open Py |...|P, or closed [P1]...|Px]

e interleaving, shared variables, message passing

114 /131

Parallel operators PC2.2-30

(pure) interleaving for TS T ||| T2
e only concurrency, no communication

synchronous message passing for TS Ty ||syn T2
e interleaving, synchronization via actions in Syn

interleaving for program graphs P; ||| P
e interleaving, shared variables

channel systems: open P;|...|P, or closed [P1]...|P.]

e interleaving, shared variables
e synchronous and asynchronous message passing

synchronous product for TS 7, ® T,
e no interleaving, “pure” synchronization

115/131

Synchronous product

for parallel systems with fully synchronized processes

71 = (51, ACtl, —1,)
T = (52, Acty, —»,)

synchronous product:

T®T = (5% S, Act,—,...)

} two TS

116 /131

Synchronous product

for parallel systems with fully synchronized processes

71 = (51, ACtl, —1,)
75 = (52, ACtz, —9,)

synchronous product:
T = (51 X SQ,ACt, —,)

where the action set Act is given by a function
Acty xActy — Act, (a,B) — oaxf3

} two TS

action name for the concurrent
execution of a and 3

117 /131

Synchronous product

for parallel systems with fully synchronized processes

71 = (51, ACtl, —1,)
75 = (52, ACtz, —9,)

synchronous product:
T = (51 X SQ,ACt, —,)

where the action set Act is given by a function
Acty xActy — Act, (a,B) — oaxf3

} two TS

action name for the concurrent
execution of a and 3

if action names are irrelevant: Act; = Act, = Act = {1}

118/131

Synchronous product

for parallel systems with fully synchronized processes

71 = (51, ACtl, —1,)
75 = (52, ACtg, —9,)

synchronous product:

T®T = (5% S, Act,—,...)

} two TS

transition relation —:

$1—a>1${ A 52—'8>2$§

(s1,52) 8 (),)

119/131

Synchronous product for composing circuits ...

X1y «eey Xn Yi,---3¥n wy, ..., W 2]y .-y Zf

G

L) L)

n,...,rg t,..., ty

2 sequential circuits

120/131

Synchronous product for composing circuits

PC2.2-40

X1y -eey X Yi,--,¥n w, ..., W; 2]y ..oy Zf
’ ’ Cl))) b C2
n,...,r ti,...,ty
X1, » Xn Yi,---y¥n
GG
Wi, ..., W Z]1,---3 %]

L)

n,...

s Ik by . ..

121/131

Synchronous product: example

1 y X ——or z

not
nl—1 n

122/131

Synchronous product: example

1 y
not
n I

. (0 1)

initially:
n = 0

transition function:
5"1 == _|r]_

X —

or

PC2.2-52

rn

123/131

Synchronous product: example

1 y X ——or z
t not T

initially: initially:
n = 0 n = 0
transition function: transition function:

0, =N 0, =V X

124 /131

Synchronous product: example

1 y X ——or z
t not T

TS for the
composite
circuit

LoD

125/131

Synchronous product: example

1 y X ——or z
t not T

TS for the
composite
circuit

LoD

126 /131

Synchronous product: example

1 y X ——or z
t not T
n I n
71 @
TS for the
composite

circuit

LoD

127 /131

State explosion problem

TS for reactive systems can be enormously large

128 /131

State explosion problem

TS for reactive systems can be enormously large

e infinite for systems with

* variables of infinite domains, e.g., N
* infinite data structures, e.g., stacks, queues, lists,...

129/131

State explosion problem

TS for reactive systems can be enormously large

e infinite for systems with

* variables of infinite domains, e.g., N
* infinite data structures, e.g., stacks, queues, lists,...

e if finite: exponential growth in

130/131

State explosion problem

TS for reactive systems can be enormously large

e infinite for systems with

* variables of infinite domains, e.g., N

* infinite data structures, e.g., stacks, queues, lists,...
e if finite: exponential growth in

* number of parallel components,
e.g., state space of 71 || ... || 7 is S1%...x S,

131/131

State explosion problem

TS for reactive systems can be enormously large

e infinite for systems with

* variables of infinite domains, e.g., N

* infinite data structures, e.g., stacks, queues, lists,...
e if finite: exponential growth in

* number of parallel components,
e.g., state space of 71 || ... || 7 is S1%...x S,

* number of variables and channels

132/131

State explosion problem

TS for reactive systems can be enormously large

e infinite for systems with

* variables of infinite domains, e.g., N

* infinite data structures, e.g., stacks, queues, lists,...
e if finite: exponential growth in

* number of parallel components,
e.g., state space of 71 || ... || 7 is S1%...x S,

* number of variables and channels

e.g., for channel systems: size of the state space is

|L0C1| Ceen e |LOC,,| . H |Dom(x)| . H |Dom(c)|cap(c)

x€Var ceChan

133/131

Model checking

system Py]|...||Pa requirements
transition specification spec
system T P P

N\

model checker
does 7 satisfy spec ?

W

no 4+ error indication

134 /131

Model checking

system Py||.. .|| P

requirements

l

specification spec

/
4 — N
transition system 7
for Py||. . || Pn
model checker
does 7 satisfy spec ?
NS J

/

yes no 4+ error indication

135/131

Model checking

syntactic description
of Pl, <o ey P,,

SOS—ruIe*

PC2.2-43

requirements

l

specification spec

/

-~

T

transition system 7
for P. . .|| Pn

N\

does 7 satisfy spec ? J

[model checker

~

J

/

yes no 4+ error indication

136 /131

