Reactive Systems Verification alias Model Checking I

Solutions of Assignment 3

Luca Tesei

Academic Year 2015/16

Exercise 1

Consider the following LTS where the set of atomic propositions is $AP = \{a, b\}$.

- 1. Specify formally the set of all the traces on the alphabet 2^{AP} .
- 2. For each of the following fairness conditions:
 - (a) $\mathcal{F}_1 = \{\{\}, \{\}, \{\eta\}\}$ (b) $\mathcal{F}_2 = \{\{\}, \{\eta\}, \{\}\}$ (c) $\mathcal{F}_3 = \{\{\eta\}, \{\}, \{\}\}$ (d) $\mathcal{F}_4 = \{\{\}, \{\}, \{\alpha\}\}$ (e) $\mathcal{F}_5 = \{\{\}, \{\alpha\}, \{\}\}$ (f) $\mathcal{F}_6 = \{\{\alpha\}, \{\}, \{\}\}$ (g) $\mathcal{F}_7 = \{\{\}, \{\delta\}, \{\eta\}\}$

 - (h) $\mathcal{F}_8 = \{\{\delta\}, \{\}, \{\eta\}\}$
 - (i) $\mathcal{F}_9 = \{\{\eta\}, \{\delta\}, \{\}\}$
 - (j) $\mathcal{F}_{10} = \{\{\delta, \eta\}, \{\}, \{\}\}$

determine if the fairness condition is realizable and, if yes, specify the corresponding set of fair traces.

Solution of Exercise 1

- 1. The possible paths, with the corresponding traces, are the following:
 - paths of kind $\Pi_1 = s_1(s_2 + s_3s_2)(s_3s_2)^{\omega}$, with traces $T_1 = \{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^{\omega}$
 - paths of kind $\Pi_2 = s_1(s_2 + s_3s_2)(s_3s_2)^* s_4^{\omega}$, with traces $T_2 = \{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^* \{a, b\}^{\omega}$
 - paths of kind $\Pi_3 = (s_1(s_2 + s_3s_2)(s_3s_2)^*s_4^+)^+s_1(s_2 + s_3s_2)(s_3s_2)^{\omega}$, with traces $T_3 = (\{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^*\{a,b\}^+)^+\{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^{\omega}$
 - paths of kind $\Pi_4 = (s_1(s_2 + s_3s_2)(s_3s_2)^*s_4^+)^+s_1(s_2 + s_3s_2)(s_3s_2)^*s_4^\omega$, with traces $T_4 = (\{\{b\} + \{a\}\{b\})(\{a\}\{b\})^*\{a,b\}^+)^+\{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^*\{a,b\}^\omega)$
 - paths of kind $\Pi_5 = (s_1(s_2 + s_3s_2)(s_3s_2)^*s_4^+)^{\omega}$, with traces $T_5 = (\{\}(\{b\} + \{a\}\{b\})(\{a\}\{b\})^*\{a,b\}^+)^{\omega}$

2. Let us now consider the various fairness conditions:

(a) $\mathcal{F}_1 = \{\{\}, \{\}, \{\eta\}\}$

the fairness condition is trivially realizable; the weak fairness on η forbids to cycle forever in state s_4 , thus all the paths of kinds Π_2 and Π_4 must be discarded. The other kinds are all fair.

(b)
$$\mathcal{F}_2 = \{\{\}, \{\eta\}, \{\}\}$$

the fairness condition is trivially realizable; the strong fairness on η forbids to cycle forever in state s_4 , thus all the paths of kinds Π_2 and Π_4 must be discarded. The other kinds are all fair.

(c) $\mathcal{F}_3 = \{\{\eta\}, \{\}, \{\}\}\}$

the fairness condition is realizable, i.e. from each state it is possible to start a fair path. The only fair paths in this case are those of kind Π_5 , the others are all unfair because η is not executed infinitely many times unconditionally.

(d) $\mathcal{F}_4 = \{\{\}, \{\}, \{\alpha\}\}$

the fairness condition is trivially realizable; the weak fairness on α in this case is never "activated" that is to say that in no path α is continuously enabled infinitely many times. Thus, all kinds of paths are fair under this condition.

(e) $\mathcal{F}_5 = \{\{\}, \{\alpha\}, \{\}\}$

the fairness condition is trivially realizable; the strong fairness on α forbids to cycle forever between states s_3 and s_2 , thus all the paths of kinds Π_1 and Π_3 must be discarded. The other kinds are all fair.

(f) $\mathcal{F}_6 = \{\{\alpha\}, \{\}, \{\}\}$

the fairness condition is realizable, i.e. from each state it is possible to start a fair path. The only fair paths in this case are those of kind Π_5 , the others are all unfair because α is not executed infinitely many times unconditionally.

(g) $\mathcal{F}_7 = \{\{\}, \{\delta\}, \{\eta\}\}$

the fairness condition is trivially realizable; the weak fairness on η forbids to cycle forever in state s_4 , thus all the paths of kinds Π_2 and Π_4 must be discarded. It is easy to see that the strong fairness on δ is respected by all runs of kind Π_1 and Π_3 . The paths of kind Π_5 should be divided into those that visit state s_3 infinitely many times and those that do not. The former are fair under this condition, while the latter must be discarded.

(h) $\mathcal{F}_8 = \{\{\delta\}, \{\}, \{\eta\}\}$

the fairness condition is realizable, i.e. from each state it is possible to start a fair path. The weak fairness on η forbids to cycle forever in state s_4 , thus all the paths of kinds Π_2 and Π_4 must be discarded. The paths of kind Π_1 and Π_3 are obviously fair. The paths of kind Π_5 should be divided into those that visit state s_3 infinitely many times and those that do not. The former are fair under this condition, while the latter must be discarded.

(i) $\mathcal{F}_9 = \{\{\eta\}, \{\delta\}, \{\}\}$

the fairness condition is realizable, i.e. from each state it is possible to start a fair path. The paths of kind Π_5 should be divided into those that visit state s_3 infinitely many times and those that do not. The former are fair under this condition, while the latter must be discarded. The paths of kind Π_1 , Π_2 , Π_3 and Π_4 are all unfair and must be discarded.

(j) $\mathcal{F}_{10} = \{\{\delta, \eta\}, \{\}, \{\}\}\$ the fairness condition is realizable, i.e. from each state it is possible to start a fair path. The paths of kind Π_1 and Π_3 are obviously fair. The paths of kind Π_5 are all fair. The paths of kind Π_2 and Π_4 are unfair and must be discarded.

Exercise 2

Consider the following transition system TS.

Consider a set of atomic propositions $AP = \{a, b\}$ and the following safety property P_{safe} : "whenever a holds then after one step b holds and a does not hold".

- 1. Draw a NFA A that accepts the set of minimal bad prefixes for P_{safe} .
- 2. Decide if TS $\models P_{\text{safe}}$ by using the product TS \otimes A. In case TS $\not\models P_{\text{safe}}$, provide a counterexample.

Solution of Exercise 2

1. The NFA A accepting the set of minimal bad prefixes is the following

2. The following portion of the product $TS \otimes A$ shows that $TS \not\models P_{safe}$

$$\underbrace{(s_0, q_0) \longrightarrow (s_1, q_0) \longrightarrow (s_3, q_1) \longrightarrow (s_2, q_2)}_{(s_1, q_0) \longrightarrow (s_2, q_2)}$$

Indeed, a state is reachable where the accepting state of the automaton A is present. The corresponding counter example is the path $s_0s_1s_3s_2$ corresponding to the trace $\{\}\{b\}\{a\}\{a,b\}$, i.e. after one step in which a held, a holds again violating the property.

Exercise 3

1. Write an ω -regular expression that denotes exactly the ω -regular language accepted by the following non-deterministic Büchi automaton:

Draw two non-deterministic Büchi automata A₁ and A₂ such L(A₁) is the ω-regular language denoted by the ω-regular expression (A+B)*(CB+CA)(A+C)^ω and L(A₂) is the ω-regular language denoted by the ω-regular expression (AB)⁺C(A + B)*A^ω. Then, apply the product construction (using GNBA) to obtain an NBA A with L(A) = L(A₁) ∩ L(A₂).

Solution of Exercise 3

- 1. $\mathcal{L}_{q_{0}q_{1}} = [(A+B)^{*}(AB+CB) + (A+B)^{*}]^{*}(A+C)$ $\mathcal{L}_{q_{1}q_{1}} = [B(A+B)^{*}(A+C)]^{*}$ $\mathcal{L}_{q_{1}q_{1}} \setminus \{\epsilon\} = [B(A+B)^{*}(A+C)]^{+}$ $\mathcal{L}_{q_{0}q_{2}} = [(A+B)^{*}(AB+CB) + (A+B)^{*}]^{*}(B+AA+CA)[AC^{*}(B+C)]^{*}$ $\mathcal{L}_{q_{2}q_{2}} \geq [AC^{*}(B+C)]^{*}$ $\mathcal{L}_{q_{2}q_{2}} \setminus \{\epsilon\} = [AC^{*}(B+C)]^{+}$ $\mathcal{L}_{\omega} = [(A+B)^{*}(AB+CB) + (A+B)^{*}]^{*}(A+C)[B(A+B)^{*}(A+C)]^{\omega} +$ $[(A+B)^{*}(AB+CB) + (A+B)^{*}]^{*}(B+AA+CA)[AC^{*}(B+C)]^{*}[AC^{*}(B+C)]^{\omega}$
- 2. The two NBAs A_1 and A_2 are depicted in the following

The GNBA \mathcal{G} resulting from the synchronous product of A_1 and A_2 is the following

where the family of accepting states is $\mathcal{F}_{\mathcal{G}} = \{\{(q_2, r_3), (q_2, r_4)\}, \{(q_2, r_4)\}\}$. By applying the construction to obtain an NBA from a GNBA, the following NBA *B* is obtained

accepting the language $(AB)^+C(A+B)A^{\omega}$, which is indeed the intersection $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

Exercise 4

Consider a set of atomic propositions $AP = \{a, b\}$ and the following transition system TS.

Consider the following liveness property P_{live} : "whenever a holds then b will eventually hold".

- 1. Draw a NBA A that accepts the set of *bad behaviours* for P_{live} .
- 2. Decide if $TS \models P_{live}$ by using the product $TS \otimes A$. In case $TS \not\models P_{live}$, provide a counterexample.

Solution of Exercise 4

1. An NBA A accepting the set of *bad behaviours* for P_{live} is as follows

In the following a partial TS resulting from the product

showing that TS $\not\models P_{\text{live}}$ because a strongly connected component (surrounded in green) is reachable containing the accepting state q_1 . The associated counterexample is the path $s_0s_1s_2s_3^{\omega}$ corresponding to the trace $\{b\}\{a,b\}\{\}\{a\}^{\omega}$.