Reactive Systems Verification alias Model Checking I

Assignment 3

Luca Tesei

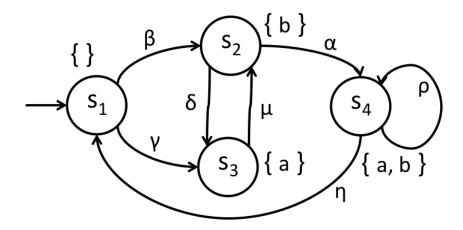
Academic Year 2015/16

Instructions

Reply to all questions justifying your answers as clearly as possible. Send an electronic (also handwritten and scanned, but readable) version to

Exercise 1

Consider the following LTS where the set of atomic propositions is $AP = \{a, b\}$.



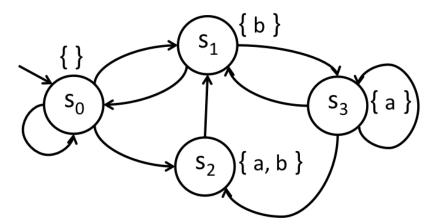
- 1. Specify formally the set of all the traces on the alphabet 2^{AP} .
- 2. For each of the following fairness conditions:
 - (a) $\mathcal{F}_1 = \{\{\}, \{\}, \{\eta\}\}$
 - (b) $\mathcal{F}_2 = \{\{\}, \{\eta\}, \{\}\}\}$
 - (c) $\mathcal{F}_3 = \{\{\eta\}, \{\}, \{\}\}\}$

- (d) $\mathcal{F}_4 = \{\{\}, \{\}, \{\alpha\}\}$
- (e) $\mathcal{F}_5 = \{\{\}, \{\alpha\}, \{\}\}\}$
- (f) $\mathcal{F}_6 = \{\{\alpha\}, \{\}, \{\}\}\}$
- (g) $\mathcal{F}_7 = \{\{\}, \{\delta\}, \{\eta\}\}$
- (h) $\mathcal{F}_8 = \{\{\delta\}, \{\}, \{\eta\}\}$
- (i) $\mathcal{F}_9 = \{\{\eta\}, \{\delta\}, \{\}\}\}$
- (j) $\mathcal{F}_{10} = \{\{\delta, \eta\}, \{\}, \{\}\}\}$

determine if the fairness condition is realizable and, if yes, specify the corresponding set of fair traces.

Exercise 2

Consider the following transition system TS.

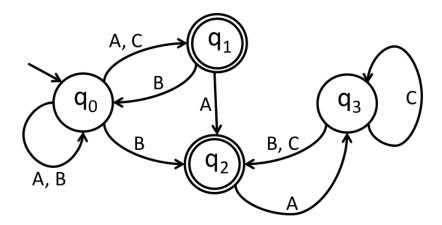


Consider a set of atomic propositions $AP = \{a, b\}$ and the following safety property P_{safe} : "whenever a holds then after one step b holds and a does not hold".

- 1. Draw a NFA A that accepts the set of minimal bad prefixes for $P_{\rm safe}$.
- 2. Decide if $TS \models P_{\text{safe}}$ by using the product $TS \otimes A$. In case $TS \not\models P_{\text{safe}}$, provide a counterexample.

Exercise 3

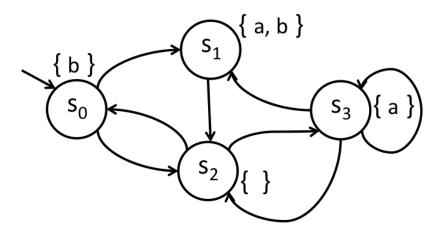
1. Write an ω -regular expression that denotes exactly the ω -regular language accepted by the following non-deterministic Büchi automaton:



2. Draw two non-deterministic Büchi automata A_1 and A_2 such $\mathcal{L}(A_1)$ is the ω -regular language denoted by the ω -regular expression $(A+B)^*(CB+CA)(A+C)^\omega$ and $\mathcal{L}(A_2)$ is the ω -regular language denoted by the ω -regular expression $(AB)^+C(A+B)^*A^\omega$. Then, apply the product construction (using GNBA) to obtain an NBA A with $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

Exercise 4

Consider a set of atomic propositions $AP = \{a, b\}$ and the following transition system TS.



Consider the following liveness property P_{live} : "whenever a holds then b will eventually hold".

- 1. Draw a NBA A that accepts the set of bad behaviours for P_{live} .
- 2. Decide if $TS \models P_{live}$ by using the product $TS \otimes A$. In case $TS \not\models P_{live}$, provide a counterexample.