Reactive Systems Verification alias Model Checking I

Assignment 3

Luca Tesei

Academic Year 2015/16

Instructions

Reply to all questions justifying your answers as clearly as possible. Send an electronic (also handwritten and scanned, but readable) version to

luca <dot> tesei <at> unicam <dot> it by **24th June 2016 23.59**

Exercise 1

Consider the following LTS where the set of atomic propositions is $AP = \{a, b\}$.

- 1. Specify formally the set of all the traces on the alphabet 2^{AP} .
- 2. For each of the following fairness conditions:
 - (a) $\mathcal{F}_1 = \{\{\}, \{\}, \{\eta\}\}$ (b) $\mathcal{F}_2 = \{\{\}, \{\eta\}, \{\}\}$ (c) $\mathcal{F}_3 = \{\{\eta\}, \{\}, \{\}\}\}$

 $\begin{array}{ll} \text{(d)} & \mathcal{F}_4 = \{\{\}, \{\}, \{\alpha\}\} \\ \text{(e)} & \mathcal{F}_5 = \{\{\}, \{\alpha\}, \{\}\} \\ \text{(f)} & \mathcal{F}_6 = \{\{\alpha\}, \{\}, \{\}\} \\ \text{(g)} & \mathcal{F}_7 = \{\{\}, \{\delta\}, \{\eta\}\} \\ \text{(g)} & \mathcal{F}_7 = \{\{\}, \{\delta\}, \{\eta\}\} \\ \text{(h)} & \mathcal{F}_8 = \{\{\delta\}, \{\}, \{\eta\}\} \\ \text{(i)} & \mathcal{F}_9 = \{\{\eta\}, \{\delta\}, \{\}\} \\ \text{(j)} & \mathcal{F}_{10} = \{\{\delta, \eta\}, \{\}, \{\}\} \\ \end{array}$

determine if the fairness condition is realizable and, if yes, specify the corresponding set of *fair* traces. Justify your answers!

Exercise 2

Consider the following transition system TS.

Consider a set of atomic propositions $AP = \{a, b\}$ and the following safety property P_{safe} : "whenever a holds then after one step b holds and a does not hold".

- 1. Draw a NFA A that accepts the set of minimal bad prefixes for P_{safe} .
- 2. Decide if $TS \models P_{safe}$ by using the product $TS \otimes A$. In case $TS \not\models P_{safe}$, provide a counterexample.

Exercise 3

1. Write an ω -regular expression that denotes exactly the ω -regular language accepted by the following automaton

Draw two non-deterministic Büchi automata A₁ and A₂ such L(A₁) is the ω-regular language denoted by the ω-regular expression (A+B)*(CB+CA)(A+C)^ω and L(A₂) is the ω-regular language denoted by the ω-regular expression (AB)⁺C(A + B)*A^ω. Then, apply the product construction (using GNBA) to obtain an NBA A with L(A) = L(A₁) ∩ L(A₂).

Exercise 4

Consider a set of atomic propositions $AP = \{a, b\}$ and the following transition system TS.

Consider the following liveness property P_{live} : "whenever a holds then b will eventually hold".

- 1. Draw a NBA A that accepts the set of *bad behaviours* for P_{live} .
- 2. Decide if $TS \models P_{live}$ by using the product $TS \otimes A$. In case $TS \not\models P_{live}$, provide a counterexample.