A very short introduction to JPF

Franco Raimondi

Department of Computer Science
School of Science and Technology
Middlesex University
http://www.rmnd.net

Franco Raimondi A very short introduction to JPF

A very short introduction to JPF

Franco Raimondi A very short introduction to JPF

Writing Java code

What happens when you write Java code?
public class Simple {

static int plus (int a) {
int b = 1;
return a+b;

}

public static void main (String[] args) {
System.out.println(plus(3));
}
}

e Compile with javac Simple.java

@ Run with java Simple

Franco Raimondi A very short introduction to JPF

Java .class files

After compiling, you obtain a .class file. You can check the
content with javap -c -s -verbose Simple:

..
iconst_1
istore_1
iload_O
iload_1
iadd
ireturn

..

—, O WN P O M

Franco Raimondi A very short introduction to JPF

Executing .class files

What happens when you run a .class file? The execution model of
.class files is stack-based:

@ Each method has an array of local variables and a “local”
stack: this is called a frame.
@ Each thread has a stack of frames.

@ Each class contains a constant pool

Franco Raimondi A very short introduction to JPF

Java bytecode example

load constant 1
store top stack
load from var 1
load from var 2
add 2 values on

into stack
in var 2

to stack

to stack

top of stack

int plus(int a) 0: iconst_1
{ P 1: istore_2
int b = 1: 2: iload_1
11return a+1’>' 3: iload.2
} ’ 4: iadd
5: ireturn
Local variables
vo vl w2

A
T First arg.

Ref. to "this"

Stack

Franco Raimondi A very short introduction to JPF

Java bytecode example - 2

load constant 1
store top stack
load from var 1
load from var 2
add 2 values on

into stack
in var 2

to stack

to stack

top of stack

int plus(int a) 0: iconst_1
{ P 1: istore_2
int b = 1: 2: iload_1
11return a+1’>' 3: iload.2
} ’ 4: iadd
5: ireturn
Local variables

vo vl wv2 w2

A
T First arg.

Ref. to "this"

1 Stack

Franco Raimondi A very short introduction to JPF

Java bytecode example - 3

load constant 1
store top stack
load from var 1
load from var 2
add 2 values on

into stack
in var 2

to stack

to stack

top of stack

int plus(int a) 0: iconst_1
{ P 1: istore_2
int b = 1: 2: iload_1
11return a+1’>' 3: iload_2
} ’ 4: iadd

5: ireturn

Local variables

| 3 1 |

vo vl wv2 w2

A
T First arg.

Ref. to "this"

Stack

Franco Raimondi A very short introduction to JPF

Java bytecode example - 4

int plus(int a) o: %CODSt'l
{ 1: istore_2
int b o= 1: 2: iload_1
return a+1’>' 3: iload_2
} ’ 4: iadd
5: ireturn

//
//
//
//
//

load constant 1
store top stack
load from var 1
load from var 2
add 2 values on

into stack
in var 2

to stack

to stack

top of stack

Local variables

#|3 1

vo vl wv2 w2

A
T First arg.

Ref. to "this"

1 Stack

Franco Raimondi A very short introduction to JPF

Java bytecode example - 5

int plus(int a) o: %CODSt'l
{ 1: istore_2
int b o= 1: 2: iload_1
return a+é' 3: iload_2
} ’ 4: iadd
5: ireturn

//
//
//
//
//

load constant 1
store top stack
load from var 1
load from var 2
add 2 values on

into stack
in var 2

to stack

to stack

top of stack

Local variables

#|3 1

vo vl wv2 w2

A
T First arg.

Ref. to "this"

4 Stack

Franco Raimondi A very short introduction to JPF

Java Pathfinder

@ JPF is a popular “model checker’ for Java code. In its default
configuration JPF detects unhandled exceptions, deadlocks,
and races.

e JPF is essentially a customizable JVM. It reads .class files and
replaces the default JVM.

o JPF is written in Java... so there is JVM running JPF, which
is a JVM in itself.

http://jpf.byu.edu/

Franco Raimondi A very short introduction to JPF

http://jpf.byu.edu/

Choice generators and JPF states

@ JPF creates a choice whenever multiple execution paths can
arise (non-deterministic choices, user input, thread
scheduling).

@ The byte-code comprised between two choices defines a
JPF state.

@ JPF can store and explore states using various search
strategies.

Franco Raimondi A very short introduction to JPF

JPF: install and compile

(you need a JVM, I'm using 1.8, and ant)

$ hg clone https://jpf.byu.edu/hg/jpf-core
$ cd jpf-core

$ ant

[... after a few seconds ...]

BUILD SUCCESSFUL

Total time: 11 seconds

Franco Raimondi A very short introduction to JPF

Initial configuration

In your home directory, create a directory ~/.jpf. In this
directory, create a site.properties file similar to the following
(change as appropriate):

JPF site configuration
jpf-core = ${user.home}/path/to/jpf-core
extensions=${jpf-core}

Franco Raimondi A very short introduction to JPF

Running JPF

@ You need a .class file. There are some examples in the JPF
distribution, we will use these.

@ You need a configuration file to tell JPF what to do. Usually,
if you want to verify the file SomeClass. java, you create a
file called SomeClass. jpf

Example in src/examples/Rand. jpf:
target = Rand

cg.enumerate_random = true
report.console.property_violation=error,trace

Franco Raimondi A very short introduction to JPF

Example Java class

public class Rand {
public static void main (String[] args) {
System.out.println("computing ¢ = a/(b+a - 2)..");
Random random = new Random();
int a = random.nextInt(2);
System.out.printf ("a=%d\n", a);
//... lots of code here
int b = random.nextInt(3);

System.out.printf(" b=%d ,a=4d\n", b, a);
int ¢ = a/(b+ta -2);
System.out.printf("=> c=Yd , b=¥%d, a=)d\n", c, b, a);

Franco Raimondi A very short introduction to JPF

Running JPF

From the directory bin/, run

./jpf ../src/examples/Rand. jpf
Check the output: various states are explored, and an error
reported in one case:

computing ¢ = a/(b+a - 2)..

a=0
b=0 ,a=0

=> c=0 , b=0, a=0
b=1 ,a=0

=> c¢=0 , b=1, a=0
b=2 ,a=0

error 1
gov.nasa. jpf.vm.NoUncaughtExceptionsProperty
java.lang.ArithmeticException: division by zero

at Rand.main(Rand.java:34)

Franco Raimondi A very short introduction to JPF

Additional JPF features

@ It is possible to write custom choice generators.

@ It is possible to add listeners: for new states, but also for
specific bytecode instructions.

@ It is possible to write custom state matching mechanisms.

@ It is possible to write custom search strategies (e.g.: DDFS
for LTL verification).

Franco Raimondi A very short introduction to JPF

Very simple listener

src/main/gov/nasa/jpf/listener/SimpleDot.java is an
example of listener. To use it, add the following line to a .jpf
configuration file: 1istener=.listener.SimpleDot

Run again jpf. Check the directory: you will get a Rand.dot file
that you can plot.

[Additional details on the board]

Franco Raimondi A very short introduction to JPF

