
logo

A very short introduction SMT, Symbolic
execution, DO178

Franco Raimondi

Department of Computer Science
School of Science and Technology

Middlesex University
http://www.rmnd.net

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

A very short introduction SMT, Symbolic execution, DO178

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Plan

What is an SMT solver, with examples.

What is symbolic execution.

Certification: DO178 very quick overview.

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

What is an SMT solver

SMT = satisfiability modulo theories. An SMT problem is a
decision problem for logical formulae expressed in a combination of
theories (in the sense defined in our first week, revision of predicate
logic).
Intuitively, “An SMT instance is a generalization of a Boolean SAT
instance in which various sets of variables are replaced by
predicates”. For instance:

((x + y) = 10) ∧ ((x + 2y) = 20)

Given x and y Int, is this SAT or unsat? What about this other
one?

((x − y) = 10) ∧ ((x + 2y) = 2)

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Let’s install an SMT solver (Z3)

git clone https://github.com/Z3Prover/z3.git

cd z3

python scripts/mk_make.py --java

cd build/

make

sudo make install

(this enables Java bindings, see below)

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

A simple example

Taken from
http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf,
using SMT language (Lisp-like)

(set-option :print-success false)

(set-option :produce-models true)

(set-option :interactive-mode true)

(set-logic QF_LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Bool)

(declare-fun w () Bool)

(assert (= (+ x (* 2 y)) 20))

(assert (= (- x y) 2))

(assert (and z w (> (- x y) 1)))

(check-sat)

(get-value (x y z w))

Run it with ./z3filename (in build/)

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178

http://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf


logo

Use Z3 from Java

import com.microsoft.z3.*;

public class SimpleTest {

public static void main (String[] args) {

HashMap<String, String> cfg = new HashMap<String, String>();

cfg.put("model", "true");

Context ctx = new Context(cfg);

IntExpr x = ctx.mkIntConst("x");

IntExpr y = ctx.mkIntConst("y");

IntExpr one = ctx.mkInt(1);

IntExpr two = ctx.mkInt(2);

System.out.println("model for: x < y + 1, x > 2");

model = check(ctx, q, Status.SATISFIABLE);

System.out.println("x = " + model.evaluate(x, false) +

", y =" + model.evaluate(y, false));

// [...]

}

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Eclipse set-up

Add .jar file generated with the --java option above:

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Eclipse set-up

Add native library, point to z3/build:

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Concolic testing

Concolic = Con(crete) + (Symb)olic.
Consider the following example (source: WIkipedia):

void f(int x, int y) {

int z = 2*y;

if (x == 100000) {

if (x < z) {

// Some nasty error here

}

}

}

How to reach the nasty error?

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Use an SMT solver to generate test cases

Each leaf is an assignment to variables for a possible test.

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

Testing?

We have moved from model checking to testing. The reason is that
safety-critical software (airplanes, medical devices, autonomous
cars, automated systems on trains, etc.) need to be certified.
Example: DO178, Software Considerations in Airborne Systems
and Equipment Certification. The guideline convers all stages of
software development, including verification. Verification is
achieved through testing.
Different levels of failure conditions:

Level Failure condition Rate

A Catastrophic 1.0E-9/hour
B Hazardous 1.0E-7/hour
C Major 1.0E-5/hour
D Minor 1.0E-3/hour
E No Effect n/a

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178



logo

In summary (1)

We have seen various tools: picosat, Spin, NuSMV, JPF, Z3.

We have seen libraries: ltl2buchi, cudd

Many many more tools exist: see
http://www.adacore.com/ for a tool that is used in
industry to certify software. It includes SAT and SMT solvers
both to prove properties and to generate test cases.

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178

http://www.adacore.com/


logo

Conclusion

In the past lectures:

Propositional logic and SAT solvers

Predicate logic

LTL: syntax, semantics, LTL2buchi

CTL: syntax, semantics, labelling algorithm.

CTL model checking using Ordered Binary Decision Diagrams
(OBDDs).

Tools: Spin for LTL, NuSMV for CTL.

Other tools and libraries: picosat, Cudd, ltl2Buchi, JPF, Z3.

Franco Raimondi A very short introduction SMT, Symbolic execution, DO178


