Model Checking I alias Reactive Systems Verification

Luca Tesei
MSc in Computer Science, University of Camerino

Topics

- Transition Systems

Material

Reading:
Chapter 2 of the book, pages 19-26.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Overview

Introduction
Modelling parallel systems
Transition systems
Modeling hard- and software systems
Parallelism and communication
Linear Time Properties
Regular Properties
Linear Temporal Logic
Computation-Tree Logic
Equivalences and Abstraction

Transition systems

Transition systems

semantic model

Transition systems

The semantic model yields a formal representation of:

Transition systems

The semantic model yields a formal representation of:

- the states of the system
- the stepwise behaviour
- the initial states

Transition systems

The semantic model yields a formal representation of:

- the states of the system
control component + information on "relevant" data
- the stepwise behaviour
- the initial states

Transition systems $\widehat{=}$ extended digraphs

The semantic model yields a formal representation of:

- the states of the system \longleftarrow nodes

- the stepwise behaviour \longleftarrow edges
- the initial states

Transition systems $\widehat{=}$ extended digraphs

The semantic model yields a formal representation of:

- the states of the system \longleftarrow nodes

- the stepwise behaviour \longleftarrow transitions
- the initial states

Transition systems $\widehat{=}$ extended digraphs

The semantic model yields a formal representation of:

- the states of the system \longleftarrow nodes
- the stepwise behaviour \longleftarrow transitions
- the initial states
- additional information on communication state properties

Transition systems $\widehat{=}$ extended digraphs

The semantic model yields a formal representation of:

- the states of the system \longleftarrow nodes
- the stepwise behaviour \longleftarrow transitions
- the initial states
- additional information on communication \longleftarrow actions
state properties \longleftarrow atomic proposition

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,
- Act is a set of actions,

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times$ Act $\times S$ is the transition relation,

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times$ Act $\times S$ is the transition relation,
i.e., transitions have the form $s \xrightarrow{\alpha} s^{\prime}$ where $\boldsymbol{s}, \boldsymbol{s}^{\prime} \in S$ and $\alpha \in$ Act

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times$ Act $\times S$ is the transition relation,
i.e., transitions have the form $s \xrightarrow{\alpha} \boldsymbol{s}^{\prime}$ where $\boldsymbol{s}, \boldsymbol{s}^{\prime} \in S$ and $\alpha \in$ Act
- $S_{0} \subseteq S$ the set of initial states,

Transition system (TS)

A transition system is a tuple

$$
\mathcal{T}=\left(S, A c t, \longrightarrow, S_{0}, A P, L\right)
$$

- S is the state space, i.e., set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times$ Act $\times S$ is the transition relation,
i.e., transitions have the form $s \xrightarrow{\alpha} s^{\prime}$ where $s, s^{\prime} \in S$ and $\alpha \in A c t$
- $S_{0} \subseteq S$ the set of initial states,
- AP a set of atomic propositions,
- $L: S \rightarrow 2^{A P}$ the labeling function

Transition system for beverage machine

Transition system for beverage machine

state space $S=\{$ pay, select, coke, sprite $\}$ set of initial states: $S_{0}=\{$ pay $\}$

Transition system for beverage machine

actions:
coin
τ
get_sprite get_coke
state space $S=\{$ pay, select, coke, sprite $\}$
set of initial states: $S_{0}=\{$ pay $\}$

Transition system for beverage machine

actions:
coin
τ
get_sprite get_coke
state space $S=\{$ pay, select, coke, sprite $\}$
set of initial states: $S_{0}=\{$ pay $\}$
set of atomic propositions: $A P=\{$ pay, drink $\}$
labeling function: $L($ coke $)=L($ sprite $)=\{d$ rink $\}$

$$
L(\text { pay })=\{\text { pay }\}, L(\text { select })=\emptyset
$$

Transition system for beverage machine

state space $S=\{$ pay, select, coke, sprite $\}$
set of initial states: $S_{0}=\{$ pay $\}$
set of atomic propositions: $A P=S$
labeling function: $L(s)=\{s\}$ for each state s

"Behaviour" of transition systems

possible behaviours of a TS result from:
select nondeterministically an initial state $s \in S_{0}$ WHILE \boldsymbol{s} is non-terminal DO
select nondeterministically a transition $s \xrightarrow{\alpha} s^{\prime}$
execute the action α and put $\boldsymbol{s}:=\boldsymbol{s}^{\prime}$

"Behaviour" of transition systems

possible behaviours of a TS result from:
select nondeterministically an initial state $s \in S_{0}$ WHILE \boldsymbol{s} is non-terminal DO
select nondeterministically a transition $s \xrightarrow{\alpha} s^{\prime}$
execute the action α and put $\boldsymbol{s}:=\boldsymbol{s}^{\prime}$
OD
executions: maximal "transition sequences"

$$
s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\alpha_{3}} \ldots \text { with } s_{0} \in S_{0}
$$

"Behaviour" of transition systems

possible behaviours of a TS result from:
select nondeterministically an initial state $s \in S_{0}$ WHILE \boldsymbol{s} is non-terminal DO
select nondeterministically a transition $s \xrightarrow{\alpha} s^{\prime}$
execute the action α and put $\boldsymbol{s}:=\boldsymbol{s}^{\prime}$ OD
executions: maximal "transition sequences"

$$
s_{0} \xrightarrow{\alpha_{1}} s_{1} \xrightarrow{\alpha_{2}} s_{2} \xrightarrow{\alpha_{3}} \ldots \text { with } s_{0} \in S_{0}
$$

reachable fragment:
$\operatorname{Reach}(\mathcal{T})=$ set of all states that are reachable from an initial state through some execution

Possible meanings of nondeterminism in TS

Possible meanings of nondeterminism in TS

- (true) concurrency modeled by interleaving
- competition of parallel dependent actions
- implementational freedom, underspecification
- incomplete information on system environment

Transition system for parallel actions

parallel execution of independent actions
parallel execution of dependent actions

Transition system for parallel actions

parallel execution of independent actions

$$
\text { e.g. } \underbrace{x:=x+1}_{\text {action } \alpha} \| \mid \underbrace{y:=y-3}_{\text {action } \beta} \quad \alpha, \beta \text { independent }
$$

parallel execution of dependent actions

Transition system for parallel actions

parallel execution of independent actions

$$
\text { e.g. } \underbrace{x:=x+1}_{\text {action } \alpha}\| \| \underbrace{y:=y-3}_{\text {action } \beta} \quad \boldsymbol{\alpha}, \beta \text { independent }
$$

parallel execution of dependent actions

$$
\text { e.g. } \underbrace{x:=x+1}_{\text {action } \alpha}\| \| \underbrace{y:=2 * x}_{\text {action } \beta} \quad \alpha, \beta \text { dependent }
$$

Transition system for parallel actions

parallel execution of independent actions \leftarrow interleaving

$$
\text { e.g. } \underbrace{x:=x+1}_{\text {action } \alpha}\| \| \underbrace{y:=y-3}_{\text {action } \beta} \quad \alpha, \beta \text { independent }
$$

parallel execution of dependent actions \leftarrow competition

$$
\text { e.g. } \underbrace{x:=x+1}_{\text {action } \alpha}\| \| \underbrace{y:=2 * x}_{\text {action } \beta} \quad \alpha, \beta \text { dependent }
$$

parallel execution of independent actions \leftarrow interleaving

parallel execution of independent actions \leftarrow interleaving

parallel execution of dependent actions \leftarrow competition
parallel execution of independent actions \leftarrow interleaving

parallel execution of dependent actions \leftarrow competition

Possible meanings of nondeterminism in TS

- (true) concurrency modeled by interleaving
- competition of parallel dependent actions
- implementational freedom, underspecification
- incomplete information on system environment

Implementation freedom

... modelled by nondeterminism

Implementation freedom

Implementation freedom

realization by a TS:

Implementation freedom

realization by a TS:

at a future refinement step the nondeterminism is replaced with one of the alternatives

Implementation freedom

realization by a TS:

at a future refinement step the nondeterminism is replaced with one of the alternatives

Implementation freedom

realization by a TS:

refined TS:

at a future refinement step the nondeterminism is replaced with one of the alternatives

Underspecification

Underspecification

Underspecification

at a future refinement step the nondeterminism is replaced with probabilism

Possible meanings of nondeterminism in TS

- (true) concurrency modeled by interleaving
- competition of parallel dependent actions
- implementational freedom, underspecification
- incomplete information on system environment

Possible meanings of nondeterminism in TS

- (true) concurrency modeled by interleaving
- competition of parallel dependent actions
- implementational freedom, underspecification
- incomplete information on system environment, e.g., interfaces with other programs, human users, sensors

Incomplete information on the environment

mobile phone

Incomplete information on the environment

mobile phone
resolution of the nondeterministic choices by a human user

Possible meanings of nondeterminism in TS

concurrency (interleaving)

$\alpha||\mid \beta$ is represented by

competitions
to be resolved by a scheduler

$$
\text { e.g. } x:=x+1 \| x:=3 x
$$

underspecification, implementational freedom
incomplete information on system environment, e.g., interfaces with other programs, human users, sensors

