
Model Checking I

alias

Reactive Systems Verification

Luca Tesei

MSc in Computer Science, University of Camerino

Topics

• Transition Systems

Material

Reading:

Chapter 2 of the book, pages 19–26.

More:

The slides in the following pages are taken from the material of the course “Introduction to Model Check-

ing” held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

1

Overview overview2.1

Introduction

Modelling parallel systems

Transition systems ←−←−←−
Modeling hard- and software systems
Parallelism and communication

Linear Time Properties

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

1 / 628

Transition systems Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

semantic model

2 / 628

Transition systems Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

3 / 628

Transition systems Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

4 / 628

Transition systems Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system

• the stepwise behaviour

• the initial states

5 / 628

Transition systems Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system
↑↑↑

control component +++ information on “relevant” data

• the stepwise behaviour

• the initial states

6 / 628

Transition systems =̂̂=̂= extended digraphs Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system ←−←−←− nodes
↑↑↑

control component +++ information on “relevant” data

• the stepwise behaviour ←−←−←− edges

• the initial states

7 / 628

Transition systems =̂̂=̂= extended digraphs Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system ←−←−←− nodes
↑↑↑

control component +++ information on “relevant” data

• the stepwise behaviour ←−←−←− transitions

• the initial states

8 / 628

Transition systems =̂̂=̂= extended digraphs Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system ←−←−←− nodes

• the stepwise behaviour ←−←−←− transitions

• the initial states

• additional information on
communication
state properties

9 / 628

Transition systems =̂̂=̂= extended digraphs Transsys/ts1.4-1

real system

semantics
abstraction

⏐⏐"
⏐⏐"
⏐⏐"

#⏐⏐
#⏐⏐
#⏐⏐ implementation

refinement

semantic model

The semantic model yields a formal representation of:

• the states of the system ←−←−←− nodes

• the stepwise behaviour ←−←−←− transitions

• the initial states

• additional information on
communication ←−←−←− actions
state properties ←−←−←− atomic proposition

10/628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

11 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

12 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

• ActActAct is a set of actions,

13 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

• ActActAct is a set of actions,

• −→⊆ S × Act × S−→⊆ S × Act × S−→⊆ S × Act × S is the transition relation,

14 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

• ActActAct is a set of actions,

• −→⊆ S × Act × S−→⊆ S × Act × S−→⊆ S × Act × S is the transition relation,

i.e., transitions have the form s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

where s , s ′ ∈ Ss, s ′ ∈ Ss, s ′ ∈ S and α ∈ Actα ∈ Actα ∈ Act

15 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

• ActActAct is a set of actions,

• −→⊆ S × Act × S−→⊆ S × Act × S−→⊆ S × Act × S is the transition relation,

i.e., transitions have the form s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

where s , s ′ ∈ Ss, s ′ ∈ Ss, s ′ ∈ S and α ∈ Actα ∈ Actα ∈ Act

• S0 ⊆ SS0 ⊆ SS0 ⊆ S the set of initial states,

16 / 628

Transition system (TS) ts1.4-TS-def

A transition system is a tuple

T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP, L)T = (S , Act,−→, S0, AP , L)

• SSS is the state space, i.e., set of states,

• ActActAct is a set of actions,

• −→⊆ S × Act × S−→⊆ S × Act × S−→⊆ S × Act × S is the transition relation,

i.e., transitions have the form s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

where s , s ′ ∈ Ss, s ′ ∈ Ss, s ′ ∈ S and α ∈ Actα ∈ Actα ∈ Act

• S0 ⊆ SS0 ⊆ SS0 ⊆ S the set of initial states,

• APAPAP a set of atomic propositions,

• L : S → 2APL : S → 2APL : S → 2AP the labeling function
17 / 628

Transition system for beverage machine ts1.4-2

paypaypay

selectselectselect

cokecokecoke spritespritesprite

18 / 628

Transition system for beverage machine ts1.4-2

paypaypay

selectselectselect

cokecokecoke spritespritesprite

state space S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}

set of initial states: S0 = {pay}S0 = {pay}S0 = {pay}

19 / 628

Transition system for beverage machine ts1.4-2

actions:
coin
τττ
get sprite
get coke

paypaypay

selectselectselect

cokecokecoke spritespritesprite

τττ τττ

get spriteget coke
coin

state space S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}

set of initial states: S0 = {pay}S0 = {pay}S0 = {pay}

20 / 628

Transition system for beverage machine ts1.4-2

actions:
coin
τττ
get sprite
get coke

paypaypay

selectselectselect

cokecokecoke spritespritesprite

τττ τττ

get spriteget coke
coin

state space S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}

set of initial states: S0 = {pay}S0 = {pay}S0 = {pay}

set of atomic propositions: AP = {pay , drink}AP = {pay , drink}AP = {pay , drink}

labeling function: L(coke) = L(sprite) = {drink}L(coke) = L(sprite) = {drink}L(coke) = L(sprite) = {drink}

L(pay) = {pay}L(pay) = {pay}L(pay) = {pay}, L(select) = ∅L(select) = ∅L(select) = ∅
21 / 628

Transition system for beverage machine ts1.4-2

actions:
coin
τττ
get sprite
get coke

paypaypay

selectselectselect

cokecokecoke spritespritesprite

τττ τττ

get spriteget coke
coin

state space S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}S = {pay , select, coke, sprite}

set of initial states: S0 = {pay}S0 = {pay}S0 = {pay}

set of atomic propositions: AP = SAP = SAP = S

labeling function: L(s) = {s}L(s) = {s}L(s) = {s} for each state sss

22 / 628

“Behaviour” of transition systems ts1.4-3

possible behaviours of a TS result from:

select nondeterministically an initial state s ∈ S0s ∈ S0s ∈ S0

WHILE sss is non-terminal DO

select nondeterministically a transition s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

execute the action ααα and put s := s ′s := s ′s := s ′
OD

23 / 628

“Behaviour” of transition systems ts1.4-3

possible behaviours of a TS result from:

select nondeterministically an initial state s ∈ S0s ∈ S0s ∈ S0

WHILE sss is non-terminal DO

select nondeterministically a transition s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

execute the action ααα and put s := s ′s := s ′s := s ′
OD

executions: maximal “transition sequences”

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . with s0 ∈ S0s0 ∈ S0s0 ∈ S0

24 / 628

“Behaviour” of transition systems ts1.4-3

possible behaviours of a TS result from:

select nondeterministically an initial state s ∈ S0s ∈ S0s ∈ S0

WHILE sss is non-terminal DO

select nondeterministically a transition s
α
−→ s ′s
α
−→ s ′s
α
−→ s ′

execute the action ααα and put s := s ′s := s ′s := s ′
OD

executions: maximal “transition sequences”

s0
α1−→ s1

α2−→ s2
α3−→ . . .s0

α1−→ s1
α2−→ s2

α3−→ . . .s0
α1−→ s1

α2−→ s2
α3−→ . . . with s0 ∈ S0s0 ∈ S0s0 ∈ S0

reachable fragment:

Reach(T)Reach(T)Reach(T) === set of all states that are reachable from
an initial state through some execution

25 / 628

Possible meanings of nondeterminism in TS ts1.4-3a

26 / 628

Possible meanings of nondeterminism in TS ts1.4-3a

• (true) concurrency modeled by interleaving

• competition of parallel dependent actions

• implementational freedom, underspecification

• incomplete information on system environment

27 / 628

Transition system for parallel actions ts1.4-4

parallel execution of independent actions

parallel execution of dependent actions

28 / 628

Transition system for parallel actions ts1.4-4

parallel execution of independent actions

e.g. x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

ααα, βββ independent

parallel execution of dependent actions

29 / 628

Transition system for parallel actions ts1.4-4

parallel execution of independent actions

e.g. x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

ααα, βββ independent

parallel execution of dependent actions

e.g. x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := 2∗xy := 2∗xy := 2∗x︸ ︷︷ ︸
action βββ

ααα, βββ dependent

30 / 628

Transition system for parallel actions ts1.4-4

parallel execution of independent actions←←← interleaving

e.g. x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

ααα, βββ independent

parallel execution of dependent actions←←← competition

e.g. x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := 2∗xy := 2∗xy := 2∗x︸ ︷︷ ︸
action βββ

ααα, βββ dependent

31 / 628

parallel execution of independent actions←←← interleaving

x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

x = 0x = 0x = 0
y = 5y = 5y = 5

x = 1x = 1x = 1
y = 5y = 5y = 5

x = 0x = 0x = 0
y = 2y = 2y = 2

x = 1x = 1x = 1
y = 2y = 2y = 2

ααα βββ

βββ ααα

32 / 628

parallel execution of independent actions←←← interleaving

x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

x = 0x = 0x = 0
y = 5y = 5y = 5

x = 1x = 1x = 1
y = 5y = 5y = 5

x = 0x = 0x = 0
y = 2y = 2y = 2

x = 1x = 1x = 1
y = 2y = 2y = 2

ααα βββ

βββ ααα

parallel execution of dependent actions←←← competition

33 / 628

parallel execution of independent actions←←← interleaving

x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := y−3y := y−3y := y−3︸ ︷︷ ︸
action βββ

x = 0x = 0x = 0
y = 5y = 5y = 5

x = 1x = 1x = 1
y = 5y = 5y = 5

x = 0x = 0x = 0
y = 2y = 2y = 2

x = 1x = 1x = 1
y = 2y = 2y = 2

ααα βββ

βββ ααα

parallel execution of dependent actions←←← competition

x := x+1x := x+1x := x+1︸ ︷︷ ︸
action ααα

||| y := 2∗xy := 2∗xy := 2∗x︸ ︷︷ ︸
action βββ

x = 0x = 0x = 0
y = 0y = 0y = 0

x = 1x = 1x = 1
y = 0y = 0y = 0

x = 0x = 0x = 0
y = 0y = 0y = 0

x = 1x = 1x = 1
y = 2y = 2y = 2

x = 1x = 1x = 1
y = 0y = 0y = 0

ααα βββ

βββ ααα

34 / 628

Possible meanings of nondeterminism in TS ts1.4-4a

• (true) concurrency modeled by interleaving

• competition of parallel dependent actions

• implementational freedom, underspecification

• incomplete information on system environment

35 / 628

Implementation freedom ts1.4-5

... modelled by nondeterminism

36 / 628

Implementation freedom ts1.4-5

sender
unknown
receiver

fax

email

37/628

Implementation freedom ts1.4-5

sender
unknown
receiver

fax

email

realization by a TS:

generate message

send fax send email

.

38 / 628

Implementation freedom ts1.4-5

sender
unknown
receiver

fax

email

realization by a TS:

generate message

send fax send email

.

at a future refinement step the nondeterminism
is replaced with one of the alternatives

39 / 628

Implementation freedom ts1.4-5

sender
known
receiver

fax

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

without
email access

realization by a TS:

generate message

send fax send email

.

at a future refinement step the nondeterminism
is replaced with one of the alternatives

40 / 628

Implementation freedom ts1.4-5

sender
known
receiver

fax

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

✟
✟

✟
✟✟❍

❍
❍

❍❍
email

without
email access

realization by a TS:

generate message

send fax send email

.

refined TS:

generate message

send fax

.

at a future refinement step the nondeterminism
is replaced with one of the alternatives

41 / 628

Underspecification ts1.4-6

42 / 628

Underspecification ts1.4-6

produce message

try to send

lost delivered

43 / 628

Underspecification ts1.4-6

produce message

try to send

lost delivered10−810−810−8
1− 10−81− 10−81− 10−8

at a future refinement step the nondeterminism
is replaced with probabilism

44 / 628

Possible meanings of nondeterminism in TS ts1.4-6a

• (true) concurrency modeled by interleaving

• competition of parallel dependent actions

• implementational freedom, underspecification

• incomplete information on system environment

45 / 628

Possible meanings of nondeterminism in TS ts1.4-6a

• (true) concurrency modeled by interleaving

• competition of parallel dependent actions

• implementational freedom, underspecification

• incomplete information on system environment, e.g.,
interfaces with other programs, human users, sensors

46 / 628

Incomplete information on the environment ts1.4-7

mobile phone

off

on

000 111 999 menu

.

47 / 628

Incomplete information on the environment ts1.4-7

mobile phone

off

on

000 111 999 menu

.

resolution of the nondeterministic choices
by a human user

48 / 628

Possible meanings of nondeterminism in TS ts1.4-8

concurrency (interleaving)

α |||βα ||| βα |||β is represented by

ααα βββ

βββ ααα

competitions

to be resolved by a scheduler
e.g. x :=x+1x :=x+1x :=x+1 ∥∥∥ x :=3xx :=3xx :=3x

x=0x=0x=0

x=1x=1x=1

x=3x=3x=3

x=0x=0x=0

x=1x=1x=1

underspecification, implementational freedom

incomplete information on system environment, e.g.,
interfaces with other programs, human users, sensors

49 / 628

	Introduction
	Modeling of Parallel Systems

