Master of Science in Computer Science - University of Camerino Reactive Systems Verification A. Y. 2016/2017 Written Test of 12th July 2017 (Appello II)
 Teacher: Luca Tesei

EXERCISE 1 (6 points)
Consider the two following transition systems.

1. Draw the transition system resulting from their product using handshaking with the handshake action set $H=\{a, b\}$.

Solution

EXERCISE 2 (9 points)
Consider the alphabet $A P=\{A, B, C, D\}$ and the following linear time properties:
(a) Whenever A holds then B does not hold for two steps
(b) B and C hold together only finitely many times
(c) If C holds infinitely many times then D holds only finitely many times
(d) C holds at least once and whenever D holds also A must hold

For each property:

1. formalise it using set expressions and first order logic;
2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
3. tell if it is a safety, liveness or mixed property; in case it is a safety property provide an NFA for the language of the minimal bad prefixes.

Solution

(a) This is a safety property. The set of all words belonging to the property is

$$
\left\{X_{0} X_{1} \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \in \mathbb{N} . A \in X_{i} \Rightarrow\left(B \notin X_{i+1} \wedge B \notin X_{i+2}\right)\right\}
$$

An LTL formula expressing the property is

$$
(A \Rightarrow(\bigcirc \neg B \wedge \bigcirc \bigcirc \neg B))
$$

An NFA accepting all the minimal bad prefixes is the following one (\sim stands for \neg)

(b) This is a liveness property. The set of all words belonging to the property is

$$
\left\{X_{0} X_{1} \ldots \in\left(2^{A P}\right)^{\omega} \mid \forall i \in \mathbb{N} . D \notin X_{i} \vee C \notin X_{i}\right\}
$$

An LTL formula expressing the property is

$$
\diamond \square(\neg B \vee \neg C)
$$

(c) This is a liveness property. The set of all words belonging to the property is

$$
\left\{X_{0} X_{1} \ldots \in\left(2^{A P}\right)^{\omega} \left\lvert\,\left(\begin{array}{l}
\exists \\
\exists
\end{array} \in \mathbb{N}: C \in X_{i}\right) \Rightarrow\left(\not{ }^{\infty} i \in \mathbb{N} . D \notin X_{i}\right)\right.\right\}
$$

An LTL formula expressing the property is

$$
(\square \diamond C) \Rightarrow(\diamond \square \neg D)
$$

(d) This is a mixed property. The set of all words belonging to the property is

$$
\left\{X_{0} X_{1} \ldots \in\left(2^{A P}\right)^{\omega} \mid\left(\exists i \in \mathbb{N}: C \in X_{i}\right) \wedge\left(\forall i \in \mathbb{N} . D \in X_{i} \Rightarrow A \in X_{i}\right)\right\}
$$

An LTL formula expressing the property is

$$
\diamond C \Rightarrow \square(D \Rightarrow A)
$$

EXERCISE 3

Consider the following transition system $T S$ on $A P=\{A, B, C\}$.

1. (3 points) Decide, for each LTL formula φ_{i} below, whether or not $T S \models \varphi_{i}$. Justify your answers! If $T S \not \vDash \varphi_{i}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{i}$.

$$
\begin{aligned}
& \varphi_{1}=\bigcirc \bigcirc A \\
& \varphi_{2}=\square(A \Rightarrow \diamond C) \\
& \varphi_{3}=\diamond \square(A \vee C)
\end{aligned}
$$

2. Consider the following fairness assumptions:

$$
\begin{array}{rlr}
\psi_{1}^{\text {fair }}=\{\{ \},\{q\},\{r\}\} & \psi_{\text {fair }}^{\text {fair }}=\{\{ \},\{r\},\{q\}\} \\
\psi_{3}^{\text {fair }} & =\{\{ \},\{g\},\{e\}\} & \psi_{4}^{\text {fair }}=\{\{ \},\{ \},\{g, e\}\}
\end{array}
$$

(a) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{2}$ under the four different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3,4\}$, separately. Whenever $T S \not \forall_{\text {fair }} \varphi_{2}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{1}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.
(b) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{3}$ under the four different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3,4\}$, separately. Whenever $T S \not \forall_{\text {fair }} \varphi_{3}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{6}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.

Solution

$T S \not \vDash \varphi_{1}$ - A path showing this is $023 \cdots$
$T S \not \models \varphi_{2}$ - A path showing this is $0(1)^{\omega}$
$T S \not \vDash \varphi_{3}$ - A path showing this is $0(23)^{\omega}$
$T S \not \forall_{\psi_{1}^{\text {fair }}} \varphi_{2}$ - Paths like $0(1)^{\omega}$ are no longer fair due to strong fairness on q, but the weak fairness on r does not rule out paths like (01) ${ }^{\omega}$.
$T S \models_{\psi_{2}^{\text {fair }}} \varphi_{2}$ - Paths like $0(1)^{\omega}$ are no longer fair due to weak fairness on q and paths like $(01)^{\omega}$ are no longer fair due to strong fairness on r.
$T S \not \models_{\psi_{3}^{\text {fair }}} \varphi_{2}$ - Paths like $0(1)^{\omega}$ are still fair.
$T S \not \vDash_{\psi_{4}^{\text {fair }}} \varphi_{2}$ - Paths like $0(1)^{\omega}$ are still fair.
$T S \not \vDash_{\psi_{1}^{\text {fair }}} \varphi_{3}$ - Paths like $0(23)^{\omega}$ are still fair.
$T S \not \vDash_{\psi_{2}^{\text {fair }}} \varphi_{3}$ - Paths like $0(23)^{\omega}$ are still fair.
$T S \models_{\psi_{3}^{\text {fair }}} \varphi_{3}$ - Paths like $0(23)^{\omega}$ are no longer fair due to strong fairness on g.
$T S \not \vDash_{\psi_{4}^{\text {fair }}}^{\text {m }} \varphi_{3}$ - Paths like $0(23)^{\omega}$ are still fair because weak fairness on g or e does not rule out them.

EXERCISE 4 (8 points)

Consider the following transition system

1. Calculate $\operatorname{Sat}(a \wedge(b \leftrightarrow c))$, $\operatorname{Sat}(\exists(c \vee b) \mathcal{U} a)$ and $\operatorname{Sat}(\exists \square(b \vee c))$. Justify your answers by showing the steps of the algorithm used for the CTL formulas.

Solution

To calculate $\operatorname{Sat}(a \wedge(b \leftrightarrow c))$:

- $\operatorname{Sat}(a)=\{0,2\}$
- $\operatorname{Sat}(b))=\{0,4\}$
- $\operatorname{Sat}(c)=\{3\}$
- $\operatorname{Sat}(b \leftrightarrow c)=\{1,2\}$
- $\operatorname{Sat}(a \wedge(b \leftrightarrow c))=\{0,2\} \cap\{1,2\}=\{2\}$

To calculate $\operatorname{Sat}(\exists(c \vee b) \mathcal{U} a)$:

- $\operatorname{Sat}(a)=\{0,2\}$
- $\operatorname{Sat}(b))=\{0,4\}$
- $\operatorname{Sat}(c)=\{3\}$
- $\operatorname{Sat}(c \vee b)=\{3\} \cup\{0,4\}=\{0,3,4\}$
- $\operatorname{Sat}(\exists(c \vee b) \mathcal{U} a)$:

$$
-T_{0}=\operatorname{Sat}(a)=\{0,2\}
$$

$$
-T_{1}=T_{0} \cup\left(\operatorname{Pred}\left(T_{0}\right) \cap \operatorname{Sat}(c \vee b)\right)=\{0,2\} \cup(\{1,3,4\} \cap\{0,3,4\})=\{0,2\} \cup\{3,4\}=\{0,2,3,4\}
$$

$-T_{2}=T_{1} \cup\left(\operatorname{Pred}\left(T_{1}\right) \cap \operatorname{Sat}(c \vee b)\right)=\{0,2,3,4\} \cup(\{0,1,2,3,4\} \cap\{0,3,4\})=\{0,2,3,4\} \cup$ $\{0,3,4\}=\{0,2,3,4\}$. The least fixpoint is $\{0,2,3,4\}$.

To calculate $\operatorname{Sat}(\exists \square(b \vee c))$:

- $\operatorname{Sat}(b))=\{0,4\}$
- $\operatorname{Sat}(c)=\{3\}$
- $\operatorname{Sat}(b \vee c)=\{0,4\} \cup\{3\}=\{0,3,4\}$
- $\operatorname{Sat}(\exists \square(b \vee c))$:
$-T_{0}=\operatorname{Sat}(b \vee c)=\{0,3,4\}$
$-T_{1}=T_{0}-\left\{s \in T_{0} \mid \operatorname{Succ}\left(T_{0}\right) \cap \operatorname{Sat}(b \vee c)=\emptyset\right\}=\{0,3,4\}-\{3\}=\{0,4\}$
$-T_{2}=T_{1}-\left\{s \in T_{0} \mid \operatorname{Succ}\left(T_{1}\right) \cap \operatorname{Sat}(b \vee c)=\emptyset\right\}=\{0,4\}-\emptyset=\{0,4\}$. The greatest fixpoint is $\{0,4\}$.

