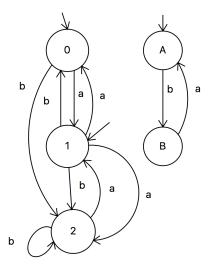
Master of Science in Computer Science - University of Camerino Reactive Systems Verification A. Y. 2016/2017 Written Test of 12th July 2017 (Appello II)

Teacher: Luca Tesei

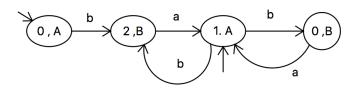
EXERCISE 1 (6 points)

Consider the two following transition systems.



1. Draw the transition system resulting from their product using handshaking with the handshake action set $H = \{a, b\}$.

Solution



EXERCISE 2 (9 points)

Consider the alphabet $AP = \{A, B, C, D\}$ and the following linear time properties:

- (a) Whenever A holds then B does not hold for two steps
- **(b)** B and C hold together only finitely many times
- (c) If C holds infinitely many times then D holds only finitely many times
- (d) C holds at least once and whenever D holds also A must hold

For each property:

- 1. formalise it using set expressions and first order logic;
- 2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);

3. tell if it is a safety, liveness or mixed property; in case it is a safety property provide an NFA for the language of the **minimal** bad prefixes.

Solution

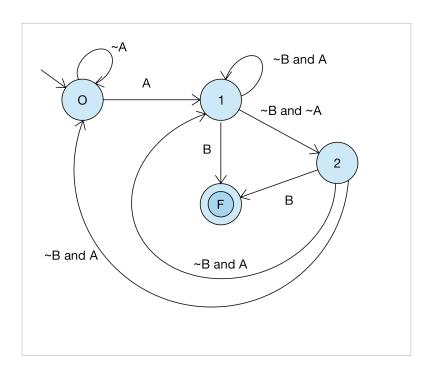
(a) This is a safety property. The set of all words belonging to the property is

$$\{X_0 X_1 \ldots \in (2^{AP})^{\omega} \mid \forall i \in \mathbb{N}. A \in X_i \Rightarrow (B \notin X_{i+1} \land B \notin X_{i+2})\}$$

An LTL formula expressing the property is

$$\Box (A \Rightarrow (\bigcirc \neg B \land \bigcirc \bigcirc \neg B))$$

An NFA accepting all the minimal bad prefixes is the following one (\sim stands for \neg)



(b) This is a liveness property. The set of all words belonging to the property is

$$\left\{ X_0 X_1 \dots \in \left(2^{AP}\right)^{\omega} \mid \forall i \in \mathbb{N}.D \notin X_i \lor C \notin X_i \right\}$$

An LTL formula expressing the property is

$$\Diamond \Box (\neg B \lor \neg C)$$

(c) This is a liveness property. The set of all words belonging to the property is

$$\left\{ X_0 X_1 \dots \in \left(2^{AP} \right)^{\omega} \mid \left(\exists i \in \mathbb{N} : C \in X_i \right) \Rightarrow \left(\forall i \in \mathbb{N} . D \notin X_i \right) \right\}$$

An LTL formula expressing the property is

$$(\Box \Diamond C) \Rightarrow (\Diamond \Box \neg D)$$

(d) This is a mixed property. The set of all words belonging to the property is

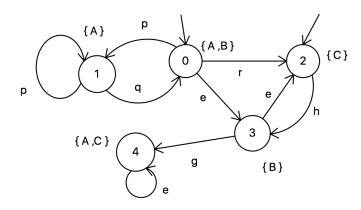
$$\left\{X_0 X_1 \ldots \in \left(2^{AP}\right)^{\omega} \mid (\exists i \in \mathbb{N} : C \in X_i) \land (\forall i \in \mathbb{N} . D \in X_i \Rightarrow A \in X_i)\right\}$$

An LTL formula expressing the property is

$$\Diamond C \Rightarrow \Box (D \Rightarrow A)$$

EXERCISE 3

Consider the following transition system TS on $AP = \{A, B, C\}$.



1. (3 points) Decide, for each LTL formula φ_i below, whether or not $TS \models \varphi_i$. Justify your answers! If $TS \not\models \varphi_i$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\varphi_1 = \bigcirc \bigcirc A$$

$$\varphi_2 = \Box (A \Rightarrow \Diamond C)$$

$$\varphi_3 = \Diamond \Box (A \lor C)$$

2. Consider the following fairness assumptions:

$$\begin{array}{ll} \psi_1^{\mathrm{fair}} = \{ \{ \}, \{q\}, \{r\} \} & \psi_2^{\mathrm{fair}} = \{ \{ \}, \{r\}, \{q\} \} \\ \psi_3^{\mathrm{fair}} = \{ \{ \}, \{g\}, \{e\} \} & \psi_4^{\mathrm{fair}} = \{ \{ \}, \{ \}, \{g, e\} \} \end{array}$$

- (a) (3 points) Decide whether or not $TS \models_{\mathrm{fair}} \varphi_2$ under the four different fairness conditions ψ^i_{fair} , $i \in \{1, 2, 3, 4\}$, separately. Whenever $TS \not\models_{\mathrm{fair}} \varphi_2$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_1$ and arguing that π is fair with respect to ψ^i_{fair} .
- (b) (3 points) Decide whether or not $TS \models_{\text{fair}} \varphi_3$ under the four different fairness conditions ψ^i_{fair} , $i \in \{1, 2, 3, 4\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_3$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_6$ and arguing that π is fair with respect to ψ^i_{fair} .

Solution

 $TS \not\models \varphi_1$ - A path showing this is $0 \ 2 \ 3 \cdots$

 $TS \not\models \varphi_2$ - A path showing this is $0 \ (1)^{\omega}$

 $TS \not\models \varphi_3$ - A path showing this is $0 \ (2 \ 3)^{\omega}$

 $TS \not\models_{\psi_1^{\mathrm{fair}}} \varphi_2$ - Paths like 0 $(1)^\omega$ are no longer fair due to strong fairness on q, but the weak fairness on r does not rule out paths like $(0\ 1)^\omega$.

 $TS \models_{\psi_2^{\mathrm{fair}}} \varphi_2$ - Paths like $0 \ (1)^\omega$ are no longer fair due to weak fairness on q and paths like $(0 \ 1)^\omega$ are no longer fair due to strong fairness on r.

 $TS \not\models_{\psi_3^{\mathrm{fair}}} \varphi_2$ - Paths like 0 $(1)^\omega$ are still fair. $TS \not\models_{\psi_4^{\mathrm{fair}}} \varphi_2$ - Paths like 0 $(1)^\omega$ are still fair.

 $TS \not\models_{\psi_7^{\mathrm{fair}}} \varphi_3$ - Paths like $0\ (2\ 3)^\omega$ are still fair.

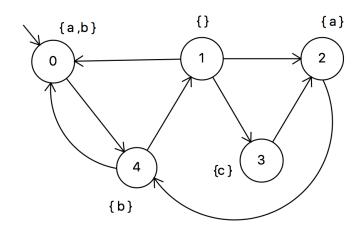
 $TS \not\models_{\psi_2^{\text{fair}}}^{\uparrow_1} \varphi_3$ - Paths like $0 \ (2 \ 3)^{\omega}$ are still fair.

 $TS\models_{\psi_3^{\mathrm{fair}}}^{-2} \varphi_3$ - Paths like $0\ (2\ 3)^\omega$ are no longer fair due to strong fairness on g.

 $TS \not\models_{\psi_4^{\text{fair}}} \varphi_3$ - Paths like $0 \ (2 \ 3)^\omega$ are still fair because weak fairness on g or e does not rule out them.

EXERCISE 4 (8 points)

Consider the following transition system



1. Calculate $\operatorname{Sat}(a \wedge (b \leftrightarrow c))$, $\operatorname{Sat}(\exists (c \vee b)\mathcal{U}a)$ and $\operatorname{Sat}(\exists \Box (b \vee c))$. Justify your answers by showing the steps of the algorithm used for the CTL formulas.

Solution

To calculate $Sat(a \land (b \leftrightarrow c))$:

- $Sat(a) = \{0, 2\}$
- Sat(b)) = $\{0, 4\}$
- $Sat(c) = \{3\}$
- $\operatorname{Sat}(b \leftrightarrow c) = \{1, 2\}$
- $Sat(a \land (b \leftrightarrow c)) = \{0, 2\} \cap \{1, 2\} = \{2\}$

To calculate $Sat(\exists (c \lor b)\mathcal{U}a)$:

- $Sat(a) = \{0, 2\}$
- Sat(b)) = $\{0,4\}$
- $Sat(c) = \{3\}$
- $Sat(c \lor b) = \{3\} \cup \{0, 4\} = \{0, 3, 4\}$
- Sat($\exists (c \lor b)\mathcal{U}a$):

$$-T_0 = Sat(a) = \{0, 2\}$$

$$-T_1 = T_0 \cup (\operatorname{Pred}(T_0) \cap \operatorname{Sat}(c \vee b)) = \{0, 2\} \cup (\{1, 3, 4\} \cap \{0, 3, 4\}) = \{0, 2\} \cup \{3, 4\} = \{0, 2, 3, 4\}$$

 $-T_2 = T_1 \cup (\operatorname{Pred}(T_1) \cap \operatorname{Sat}(c \vee b)) = \{0, 2, 3, 4\} \cup (\{0, 1, 2, 3, 4\} \cap \{0, 3, 4\}) = \{0, 2, 3, 4\} \cup \{0, 3, 4\} = \{0, 2, 3, 4\}.$ The least fixpoint is $\{0, 2, 3, 4\}$.

To calculate $Sat(\exists \Box (b \lor c))$:

•
$$Sat(b)$$
) = $\{0, 4\}$

•
$$Sat(c) = \{3\}$$

•
$$Sat(b \lor c) = \{0, 4\} \cup \{3\} = \{0, 3, 4\}$$

• Sat(
$$\exists \Box (b \lor c)$$
):

$$-T_0 = \text{Sat}(b \lor c) = \{0, 3, 4\}$$

$$-T_1 = T_0 - \{s \in T_0 \mid \operatorname{Succ}(T_0) \cap \operatorname{Sat}(b \vee c) = \emptyset\} = \{0, 3, 4\} - \{3\} = \{0, 4\}$$

$$-T_2 = T_1 - \{s \in T_0 \mid \operatorname{Succ}(T_1) \cap \operatorname{Sat}(b \vee c) = \emptyset\} = \{0, 4\} - \emptyset = \{0, 4\}.$$
 The greatest fixpoint is $\{0, 4\}$.