ABBAABAB is in \mathcal{L}_3 .

(a) Construct an NFA \mathcal{A}_n with at most n+1 states such that $\mathcal{L}(\mathcal{A}_n) = \mathcal{L}_n$.

(b) Determinize this NFA A_n using the powerset construction algorithm.

EXERCISE 4.2. Let $n \ge 1$. Consider the language $\mathcal{L}_n \subseteq \Sigma^*$ over the alphabet $\Sigma = \{A, B\}$ that

consists of all finite words where the symbol B is on position n from the right, i.e., \mathcal{L} contains

exactly the words $A_1A_2...A_k \in \{A,B\}^*$ where $k \ge n$ and $A_{k-n+1} = B$. For instance, the word

EXERCISE 4.3. Consider the transition system TS_{Sem} for the two-process mutual exclusion with a semaphore (see Example 2.24 on page 43) and TS_{Pet} for Peterson's algorithm (see Example 2.25 on page 45).

- (a) Let P_{safe} be the regular safety property "process 1 never enters its critical section from its noncritical section (i.e., process 1 must be in its waiting location before entering the critical section)" and $AP = \{ wait_1, crit_1 \}$.
 - (i) Depict an NFA for the minimal bad prefixes for P_{safe} .
 - (ii) Apply the algorithm in Section 4.2 to verify $TS_{Sem} \models P_{safe}$.
- (b) Let P_{safe} be the safety property "process 1 never enters its critical section from a state where x = 2" and $AP = \{ crit_1, x = 2 \}$.
 - (i) Depict an NFA for the minimal bad prefixes for P_{safe} .
 - (ii) Apply the algorithm in Section 4.2 to verify $TS_{Pet} \not\models P_{safe}$. Which counterexample is returned by the algorithm?

EXERCISE 4.1. Let $AP = \{a, b, c\}$. Consider the following LT properties:

- (a) If a becomes valid, afterward b stays valid ad infinitum or until c holds.
- (b) Between two neighboring occurrences of a, b always holds.
- (c) Between two neighboring occurrences of a, b occurs more often than c.
- (d) $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until c becomes valid.

For each property P_i $(1 \le i \le 4)$, decide if it is a regular safety property (justify your answers) and if so, define the NFA A_i with $\mathcal{L}(A_i) = BadPref(P_i)$. (Hint: You may use propositional formulae over the set AP as transition labels.)

Construct the product $TS \otimes A$ of the transition system and the NFA.

 $\neg b \wedge \neg c$

EXERCISE 4.15. Let $AP = \{a, b, c\}$. Depict an NBA for the LT property consisting of the infinite words $A_0A_1A_2...(2^{AP})^{\omega}$ such that

$$\forall j \geqslant 0. A_{2j} \models (a \lor (b \land c))$$

Exercises

225

for its minimal bad prefixes such that

EXERCISE 4.18. Provide an example for a regular safety property P_{safe} over AP and an NFA A

$$\mathcal{L}_{\omega}(\mathcal{A}) \;
eq \; \left(2^{AP}\right)^{\omega} \setminus P_{safe}$$

when \mathcal{A} is viewed as an NBA.

EXERCISE 4.27. Consider the transition systems TS_{Sem} and TS_{Pet} for mutual exclusion with a semaphore and the Peterson algorithm, respectively. Let P_{live} be the following ω -regular property over $AP = \{ wait_1, crit_1 \}$:

"whenever process 1 is in its waiting location then it will eventually enter its critical section"

- (a) Depict an NBA for P_{live} and an NBA $\bar{\mathcal{A}}$ for the complement property $\bar{P}_{live} = \left(2^{AP}\right)^{\omega} \setminus P_{live}$.
- (b) Show that $TS_{Sem} \not\models P_{live}$ by applying the techniques explained in Section 4.4:
 - (i) Depict the reachable fragment of the product $TS_{Sem} \otimes \bar{\mathcal{A}}$
 - (ii) Sketch the main steps of the nested depth-first search applied to $TS_{Sem} \otimes \bar{\mathcal{A}}$ for the persistence property "eventually forever $\neg F$ " where F is the acceptance set of $\bar{\mathcal{A}}$. Which counterexample is returned by Algorithm ?8
- (c) Apply now the same techniques (product construction, nested DFS) to show that $TS_{Pet} \models P_{live}$.

Figure 2.6: Individual program graphs for semaphore-based mutual exclusion.

Figure 2.7: $PG_1 \mid \mid PG_2$ for semaphore-based mutual exclusion.

Figure 2.8: Mutual exclusion with semaphore (transition system representation).

Figure 2.10: Transition system of Peterson's mutual exclusion algorithm.

 $noncrit_1$ $noncrit_1$ $b_1 := \operatorname{true}; x := 2$ $b_2 := \text{true}; x := 1$ $b_1 := false$ $wait_1$ $b_2 := \text{false}$ $wait_1$ $x=1 \lor \neg b_2$ $x=2 \vee \neg b_1$ $crit_1$ $crit_1$

 PG_2 :

 PG_1 :

Figure 2.9: Program graphs for Peterson's mutual exclusion algorithm.

Figure 2.13: The components of the book keeping example.

Figure 2.14: Transition system representation of the booking system.

 $(T_1 ||| T_2) ||$ Arbiter:

Figure 2.12: Mutual exclusion using handshaking with arbiter process.