$\{a\}$ (s_1) (s_2) (s_3) $\{a,b\}$

EXERCISE 5.1. Consider the following transition system over the set of atomic propositions $\{a, b\}$:

Indicate for each of the following LTL formulae the set of states for which these formulae are

EXERCISE 5.2. Consider the transition system TS over the set of atomic propositions $AP = \{a, b, c\}$:

Decide for each of the LTL formulae φ_i below, whether $TS \models \varphi_i$ holds. Justify your answers! If $TS \not\models \varphi_i$, provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\varphi_1 = \Diamond \Box c$$

$$\varphi_2 = \Box \Diamond c$$

$$\varphi_3 = \bigcirc \neg c \to \bigcirc \bigcirc c$$

$$\varphi_4 = \Box a$$

$$\varphi_5 = a \cup \Box (b \vee c)$$

$$\varphi_6 = (\bigcirc \bigcirc b) \cup (b \vee c)$$

EXERCISE 5.4. Suppose we have two users, *Peter* and *Betsy*, and a single printer device *Printer*. Both users perform several tasks, and every now and then they want to print their results on the *Printer*. Since there is only a single printer, only one user can print a job at a time. Suppose we have the following atomic propositions for *Peter* at our disposal:

- Peter.request ::= indicates that Peter requests usage of the printer;
- Peter.use ::= indicates that Peter uses the printer;
- Peter.release ::= indicates that Peter releases the printer.

For Betsy, similar predicates are defined. Specify in LTL the following properties:

- (a) Mutual exclusion, i.e., only one user at a time can use the printer.
- (b) Finite time of usage, i.e., a user can print only for a finite amount of time.
- (c) Absence of individual starvation, i.e., if a user wants to print something, he/she eventually is able to do so.
- (d) Absence of blocking, i.e., a user can always request to use the printer
- (e) Alternating access, i.e., users must strictly alternate in printing.

EXERCISE 5.6. Which of the following equivalences are correct? Prove the equivalence or provide a counterexample that illustrates that the formula on the left and the formula on the right are not equivalent.

(a)
$$\Box \varphi \rightarrow \Diamond \psi \equiv \varphi \cup (\psi \vee \neg \varphi)$$

(b)
$$\Diamond \Box \varphi \rightarrow \Box \Diamond \psi \equiv \Box (\varphi \cup (\psi \vee \neg \varphi))$$

(c)
$$\Box\Box(\varphi \lor \neg\psi) \equiv \neg\Diamond(\neg\varphi \land \psi)$$

(d)
$$\Diamond(\varphi \wedge \psi) \equiv \Diamond \varphi \wedge \Diamond \psi$$

(e)
$$\Box \varphi \land \bigcirc \Diamond \varphi \equiv \Box \varphi$$

(f)
$$\Diamond \varphi \land \bigcirc \Box \varphi \equiv \Diamond \varphi$$

(g)
$$\Box \Diamond \varphi \rightarrow \Box \Diamond \psi \equiv \Box (\varphi \rightarrow \Diamond \psi)$$

(h)
$$\neg(\varphi_1 \cup \varphi_2) \equiv \neg\varphi_2 \cup (\neg\varphi_1 \wedge \neg\varphi_2)$$

(i)
$$\bigcirc \Diamond \varphi_1 \equiv \Diamond \bigcirc \varphi_2$$

(j)
$$(\Diamond \Box \varphi_1) \land (\Diamond \Box \varphi_2) \equiv \Diamond (\Box \varphi_1 \land \Box \varphi_2)$$

(k)
$$(\varphi_1 \cup \varphi_2) \cup \varphi_2 \equiv \varphi_1 \cup \varphi_2$$

EXERCISE 5.11. Consider the transition system TS in Figure 5.25 with the set $AP = \{a, b, c\}$ of atomic propositions. Note that this is a single transition system with two initial states. Consider the LTL fairness assumption

$$fair = (\Box \Diamond (a \wedge b) \rightarrow \Box \Diamond \neg c) \wedge (\Diamond \Box (a \wedge b) \rightarrow \Box \Diamond \neg b).$$

Questions:

- (a) Determine the fair paths in TS, i.e., the initial, infinite paths satisfying fair
- (b) For each of the following LTL formulae:

$$\varphi_1 = \Diamond \Box a$$
 $\varphi_2 = \bigcirc \neg a \longrightarrow \Diamond \Box a$
 $\varphi_3 = \Box a$
 $\varphi_4 = b \cup \Box \neg b$
 $\varphi_5 = b \cup \Box \neg b$
 $\varphi_6 = \bigcirc \bigcirc b \cup \Box \neg b$

Figure 5.25: Transition system for Exercise 5.11.

determine whether $TS \models_{fair} \varphi_i$. In case $TS \not\models_{fair} \varphi_i$, indicate a path $\pi \in Paths(TS)$ for

which $\pi \not\models \varphi_i$.

EXERCISE 5.13. Provide an NBA for each of the following LTL formulae:
$$\Box(a \lor \neg \bigcirc b)$$
 and $\Diamond a \lor \Box \Diamond (a \leftrightarrow b)$ and $\bigcirc \bigcirc (a \lor a)$

EXERCISE 5.17. Let $\psi = \Box \ (a \leftrightarrow \bigcirc \neg a)$ and $AP = \{a\}$.

(a) Show that
$$\psi$$
 can be transformed into the following equivalent basic LTL formula
$$\varphi = \neg \left[\text{true U} \left(\neg \left(a \land \bigcirc \neg a \right) \land \neg \left(\neg a \land \neg \bigcirc \neg a \right) \right) \right].$$