LTL Syntax and Semantics

Luca Tesei

Reactive Systems Verification

MSc in Computer Science

University of Camerino

Topics

- Syntax of Linear Time Logic (LTL). Basic and derived operators. Examples.
- Semantics of LTL: satisfaction of a formula by an infinite word. Examples.
- Semantics of LTL: satisfaction of a formula by a maximal path fragment of a transition system. Examples.
- Semantics of LTL: satisfaction of a formula by a transition system.
- Exercises on LTL formula semantics and satisfaction relations.

Material

Reading:

Chapter 5 of the book, pages 225-243.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

Overview

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) Computation-Tree Logic Equivalences and Abstraction

Temporal logics

LTLSF3.1-1

extend propositional or predicate logic by temporal modalities

Temporal logics

LTLSF3.1-1

extend propositional or predicate logic by temporal modalities, e.g.

- $\Box \varphi \quad ``\varphi \text{ holds always'', i.e., now and forever} \\ in the future$
- $\Diamond \varphi$ " φ holds now or eventually in the future"

Temporal logics

LTLSF3.1-1

extend propositional or predicate logic by temporal modalities, e.g.

 $\Box \varphi \quad ``\varphi \text{ holds always'', i.e., now and forever} \\ in the future$

 $\Diamond \varphi$ " φ holds now or eventually in the future"

here: two propositional temporal logics:

- LTL: linear temporal logic
- **CTL**: computation tree logic

Introduction Modelling parallel systems Linear Time Properties **Regular Properties** Linear Temporal Logic (LTL) syntax and semantics of LTL automata-based LTL model checking complexity of LTL model checking Computation-Tree Logic Equivalences and Abstraction

$$\varphi ::= true \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi$$

where $a \in AP$

LTLSF3.1-2

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi$$

where $a \in AP$ $\bigcirc \widehat{=}$ next

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \cup \varphi_2$$

where $a \in AP$ $\bigcirc \widehat{=}$ next $\cup \widehat{=}$ until

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

derived operators:

 V, \rightarrow, \dots as usual

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \cup \varphi_2$$

derived operators:
$$\Diamond \varphi \stackrel{\text{def}}{=} true \cup \varphi \text{ eventually}$$

$$\lor, \rightarrow, \dots \text{ as usual}$$

Next (), until U and eventually \Diamond

 $\Box (try_to_send \rightarrow \bigcirc delivered)$

$$\cdots \longrightarrow \textcircled{try} \overset{\bullet}{del} \cdots$$

Next \bigcirc , until U and eventually \Diamond

 $\Box (try_to_send \rightarrow \bigcirc delivered)$

$$\cdots \longrightarrow \underbrace{try \quad del} \cdots$$

 $\Box (try_to_send \rightarrow try_to_send U delivered)$

Next \bigcirc , until U and eventually \Diamond

 $\Box (try_to_send \rightarrow \Diamond delivered)$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually always

$$\Diamond \varphi \stackrel{\text{def}}{=} true \, \mathsf{U} \, \varphi \qquad \Box \varphi \stackrel{\text{def}}{=} \neg \Diamond \neg \varphi$$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually	always
$\Diamond arphi \stackrel{def}{=} \mathit{true} U arphi$	$\Box arphi \stackrel{def}{=} \neg \Diamond \neg arphi$

mutual exclusion: $\Box(\neg crit_1 \lor \neg crit_2)$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually	always
$\Diamond arphi \stackrel{def}{=} \mathit{true} U arphi$	$\Box arphi \stackrel{def}{=} \neg \Diamond \neg arphi$

mutual exclusion: $\Box(\neg crit_1 \lor \neg crit_2)$ railroad-crossing: $\Box(train_is_near \rightarrow gate_is_closed)$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually	always
$\Diamond arphi \stackrel{def}{=} \mathit{true} U arphi$	$\Box arphi \stackrel{def}{=} \neg \Diamond \neg arphi$

mutual exclusion: $\Box(\neg crit_1 \lor \neg crit_2)$ railroad-crossing: $\Box(train_is_near \rightarrow gate_is_closed)$ progress property: $\Box(request \rightarrow \Diamond response)$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually	always
$\Diamond arphi \stackrel{def}{=} \mathit{true} U arphi$	$\Box arphi \stackrel{def}{=} \neg \Diamond \neg arphi$

mutual exclusion: $\Box(\neg crit_1 \lor \neg crit_2)$ railroad-crossing: $\Box(train_is_near \rightarrow gate_is_closed)$ progress property: $\Box(request \rightarrow \Diamond response)$ traffic light: $\Box(yellow \lor \bigcirc \neg red)$

$$\varphi ::= true \left| \begin{array}{c} a \end{array} \right| \varphi_1 \wedge \varphi_2 \left| \neg \varphi \right| \bigcirc \varphi \right| \varphi_1 \cup \varphi_2$$

eventually $\Diamond \varphi \stackrel{\text{def}}{=} true \cup \varphi$
always $\Box \varphi \stackrel{\text{def}}{=} \neg \Diamond \neg \varphi$

$$\varphi ::= true \left| \begin{array}{c} a \end{array} \right| \varphi_1 \wedge \varphi_2 \left| \neg \varphi \right| \bigcirc \varphi \right| \varphi_1 \cup \varphi_2$$

eventually $\Diamond \varphi \stackrel{\text{def}}{=} true \cup \varphi$
always $\Box \varphi \stackrel{\text{def}}{=} \neg \Diamond \neg \varphi$
infinitely often $\Box \Diamond \varphi$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

$$\varphi ::= true | a | \varphi_1 \land \varphi_2 | \neg \varphi | \bigcirc \varphi | \varphi_1 \mathsf{U} \varphi_2$$

eventually
$$\Diamond \varphi$$
 $\stackrel{\text{def}}{=}$ $true \cup \varphi$ always $\Box \varphi$ $\stackrel{\text{def}}{=}$ $\neg \Diamond \neg \varphi$ infinitely often $\Box \Diamond \varphi$ eventually forever $\Diamond \Box \varphi$

e.g., unconditional fairness
$$\Box \Diamond crit_i$$

strong fairness $\Box \Diamond wait_i \rightarrow \Box \Diamond crit_i$
weak fairness $\Diamond \Box wait_i \rightarrow \Box \Diamond crit_i$

LTL-semantics

LTLSF3.1-6A

LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e., infinite words over 2^{AP}

LTLSF3.1-6A

interpretation of LTL formulas over traces, i.e., infinite words over 2^{AP}

formalized by a satisfaction relation \models for

- LTL formulas and
- infinite words $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$

LTLSF3.1-6

for $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$:

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

for
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$$
:
 $\sigma \models true$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$

for $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$: $\sigma \models true$ $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$ $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
for
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$$
:
 $\sigma \models true$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$
 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
 $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$

for
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$$
:
 $\sigma \models true$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$
 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
 $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 $\sigma \models \bigcirc \varphi$ iff $suffix(\sigma, 1) = A_1 A_2 A_3 \dots \models \varphi$

LTLSF3.1-6

for
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$$
:
 $\sigma \models true$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$
 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
 $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 $\sigma \models \bigcirc \varphi$ iff $suffix(\sigma, 1) = A_1 A_2 A_3 \dots \models \varphi$
 $\sigma \models \varphi_1 \cup \varphi_2$ iff there exists $j \ge 0$ such that
 $suffix(\sigma, j) = A_j A_{j+1} A_{j+2} \dots \models \varphi_2$ and
 $suffix(\sigma, i) = A_i A_{i+1} A_{i+2} \dots \models \varphi_1$ for $0 \le i < j$

LTLSF3.1-6

For
$$\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$$
:
 $\sigma \models true$
 $\sigma \models a$ iff $A_0 \models a$, i.e., $a \in A_0$
 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$
 $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 $\sigma \models \bigcirc \varphi$ iff $suffix(\sigma, 1) = A_1 A_2 A_3 \dots \models \varphi$
 $\sigma \models \varphi_1 \cup \varphi_2$ iff there exists $j \ge 0$ such that
 $suffix(\sigma, j) = A_j A_{j+1} A_{j+2} \dots \models \varphi_2$ and
 $suffix(\sigma, i) = A_i A_{i+1} A_{i+2} \dots \models \varphi_1$ for $0 \le i < j$

LT property of LTL formulas

LTLSF3.1-6B

LT property of LTL formulas

interpretation of LTL formulas over traces, i.e., infinite words over 2^{AP}

formalized by a satisfaction relation \models for

- LTL formulas and
- infinite words $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$

interpretation of LTL formulas over traces, i.e., infinite words over 2^{AP}

formalized by a satisfaction relation \models for

- LTL formulas and
- infinite words $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$

LT property of formula φ : *Words*(φ) $\stackrel{\text{def}}{=} \{ \sigma \in (2^{AP})^{\omega} : \sigma \models \varphi \}$

LTL-semantics of derived operators \Diamond and \Box Litlef3.1-sem-ev-al

LTL-semantics of derived operators **(**) and **(**) LILLSF3.1-SEM-EV-AL

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

LTL-semantics of derived operators **(**) and **(**) LTLSF3.1-SEM-EV-AL

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

LTL-semantics of derived operators **(**) and **(**) LTLSF3.1-SEM-EV-AL

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

LTL semantics over TS

LTLSF3.1-LTL-WORDS-PATHS

given a TS $T = (S, Act, \rightarrow, S_0, AP, L)$

define satisfaction relation \models for

- LTL formulas over AP
- the maximal path fragments and states of ${m {\cal T}}$

LTL semantics over TS

given a TS $T = (S, Act, \rightarrow, S_0, AP, L)$

define satisfaction relation \models for

- LTL formulas over AP
- the maximal path fragments and states of ${m {\cal T}}$

assumption: T has no terminal states, i.e., all maximal path fragments in T are infinite

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

$$\pi = s_0 s_1 s_2 \dots \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi$$

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

$$\pi = s_0 s_1 s_2 \dots \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi$$
$$\text{iff} \quad trace(\pi) \in Words(\varphi)$$

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

$$\pi = s_0 s_1 s_2 \dots \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi$$
$$\text{iff} \quad trace(\pi) \in Words(\varphi)$$

remind: LT property of an LTL formula: $Words(\varphi) = \{\sigma \in (2^{AP})^{\omega} : \sigma \models \varphi\}$

 $AP = \{a, b\}$

LTLSF3.1-9

 $AP = \{a, b\}$

LTLSF3.1-9

path $\pi = \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_2 \mathbf{s}_2 \mathbf{s}_2 \ldots$

Example: LTL-semantics over paths

$$AP = \{a, b\}$$

LTLSF3.1-9

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \dots$ $trace(\pi) = \{a\} \emptyset \{a, b\}^{\omega}$

Example: LTL-semantics over paths

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \dots$ $trace(\pi) = \{a\} \emptyset \{a, b\}^{\omega}$

$$\pi \models a$$
, but $\pi \not\models b$ as $L(s_0) = \{a\}$

Example: LTL-semantics over paths

$$\begin{cases} s_0 & (s_1) & (s_2) \\ \{a\} & \emptyset & \{a, b\} \end{cases}$$

$$AP = \{a, b\}$$

LTLSF3.1-9

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$ $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$

$$\pi \models a$$
, but $\pi \not\models b$ as $L(s_0) = \{a\}$
 $\pi \models \bigcirc (\neg a \land \neg b)$

Example: LTL-semantics over paths

$$AP = \{a, b\}$$

LTLSF3.1-9

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \dots$ $trace(\pi) = \{a\} \emptyset \{a, b\}^{\omega}$

$\pi \models a$, but $\pi \not\models b$	as L(s_0) = {a }
$\pi \models \bigcirc (\neg_a \land \neg_b)$	as $L(s_1) = \emptyset$

S1

Ø

path
$$\pi = \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_2 \, \mathbf{s}_2 \, \mathbf{s}_2 \, \mathbf{s}_2 \dots$$
 $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$
 $\pi \models \mathbf{a}, \text{ but } \pi \not\models \mathbf{b}$ as $L(\mathbf{s}_0) = \{a\}$
 $\pi \models \bigcirc (\neg a \land \neg b)$ as $L(\mathbf{s}_1) = \varnothing$

So

{**a**, **b**}

 $\pi \models \bigcirc \bigcirc (a \land b)$

S0

{ <mark>a</mark> }

• 1

 $AP = \{a, b\}$

LTLSF3.1-9

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$

Ø

S0

 $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$

 $\pi \models a, \text{ but } \pi \not\models b \qquad \text{ as } L$ $\pi \models \bigcirc (\neg a \land \neg b) \qquad \text{ as } L$ $\pi \models \bigcirc \bigcirc (a \land b) \qquad \text{ as } L$

as $L(s_0) = \{a\}$ as $L(s_1) = \emptyset$ as $L(s_2) = \{a, b\}$

$$trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$$

$$\pi \models a, \text{ but } \pi \not\models b \qquad \text{as} \\ \pi \models \bigcirc (\neg a \land \neg b) \qquad \text{as} \\ \pi \models \bigcirc \bigcirc (a \land b) \qquad \text{as} \\ \pi \models (\neg b) \cup (a \land b) \qquad \text{as} \end{cases}$$

as $L(s_0) = \{a\}$ as $L(s_1) = \emptyset$ as $L(s_2) = \{a, b\}$

 $AP = \{a, b\}$

 $\begin{array}{c|c} \hline s_0 & \hline s_1 & \hline s_2 \\ \hline \{a\} & \emptyset & \{a, b\} \end{array}$

$$trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$$

 $\pi \models a, \text{ but } \pi \not\models b$ $\pi \models \bigcirc (\neg a \land \neg b)$ $\pi \models \bigcirc \bigcirc (a \land b)$ $\pi \models (\neg b) \cup (a \land b)$

as $L(s_0) = \{a\}$ as $L(s_1) = \emptyset$ as $L(s_2) = \{a, b\}$ as $s_0, s_1 \models \neg b$ and $s_2 \models a \land b$

 $\begin{array}{c|c} \hline s_0 & \hline s_1 & \hline s_2 \\ \hline \{a\} & \emptyset & \{a, b\} \end{array}$

$$AP = \{a, b\}$$

LTLSF3.1-9

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \dots$ $trace(\pi) = \{a\} \emptyset \{a, b\}^{\omega}$

S0

 $\pi \models a, \text{ but } \pi \not\models b \qquad \text{ as } L(s_0) = \{a\}$ $\pi \models \bigcirc (\neg a \land \neg b) \qquad \text{ as } L(s_1) = \emptyset$ $\pi \models \bigcirc \bigcirc (a \land b) \qquad \text{ as } L(s_2) = \{a, b\}$ $\pi \models (\neg b) \cup (a \land b) \qquad \text{ as } s_0, s_1 \models \neg b$ $\pi \models (\neg b) \cup \Box (a \land b) \qquad \text{ and } s_2 \models a \land b$

$$AP = \{a, b\}$$

$$(s_1)$$
 (s_2)

$$\emptyset$$
 {**a**, **b**}

LTLSF3.1-9

LTLSF3.1-7

 $AP = \{a, b\}$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \ldots$

LTLSF3.1-7

 $AP = \{a, b\}$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \ldots$

 $trace(\pi) = (\{a\} \varnothing)^{\omega}$

LTLSF3.1-7

 $AP = \{a, b\}$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \ldots$

 $trace(\pi) = (\{a\} \varnothing)^{\omega}$

 $\pi \models a \cup b$?

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \dots$ $trace(\pi) = (\{a\} \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \dots$ trace $(\pi) = (\{a\} \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \models \Diamond b \rightarrow (a \cup b)$?

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \dots$ trace $(\pi) = (\{a\} \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \models \Diamond b \rightarrow (a \cup b)$ as $\pi \not\models \Diamond b$
LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \dots$ trace $(\pi) = (\{a\} \, \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $\mathbf{s}_0 \not\models b$ and $\mathbf{s}_1 \not\models a \lor b$ $\pi \models \Diamond b \rightarrow (a \cup b)$ as $\pi \not\models \Diamond b$ $\pi \models \bigcirc \bigcirc \neg b$?

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \dots$ trace $(\pi) = (\{a\} \, \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $\mathbf{s}_0 \not\models b$ and $\mathbf{s}_1 \not\models a \lor b$ $\pi \models \Diamond b \to (a \cup b)$ as $\pi \not\models \Diamond b$ $\pi \models \bigcirc \bigcirc \neg b$ as $\mathbf{s}_0 \models \neg b$

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \dots trace(\pi) = (\{a\} \emptyset)^{\omega}$

- $\pi \not\models a \cup b \qquad \text{as } s_0 \not\models b \text{ and } s_1 \not\models a \lor b$
- $\pi \models \Diamond b \rightarrow (a \cup b) \quad \text{as } \pi \not\models \Diamond b$
- $\pi \models \bigcirc \bigcirc \neg b \qquad \text{ as } \mathbf{s_0} \models \neg b$

 $\pi \models \Box_a$?

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_0 s_1 s_0 s_1 \dots$ trace $(\pi) = (\{a\} \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \models \Diamond b \to (a \cup b)$ as $\pi \not\models \Diamond b$ $\pi \models \bigcirc \bigcirc \neg b$ as $s_0 \models \neg b$

 $\pi \not\models \Box a$ as $s_1 \not\models a$

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \dots$ trace $(\pi) = (\{a\} \, \emptyset)^{\omega}$

- $\pi \not\models a \cup b \qquad \text{ as } s_0 \not\models b \text{ and } s_1 \not\models a \lor b$
- $\pi \models \Diamond b \to (a \cup b) \quad \text{as } \pi \not\models \Diamond b$
- $\pi \models \bigcirc \bigcirc \neg b \qquad \text{as } \mathbf{s}_0 \models \neg b$
- $\pi \not\models \Box a$ as $s_1 \not\models a$

 $\pi \models \Box \Diamond a$?

76/416

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \dots$ $trace(\pi) = (\{a\} \emptyset)^{\omega}$ $\pi \not\models a \cup b$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \models \Diamond b \rightarrow (a \cup b)$ as $\pi \not\models \Diamond b$ $\pi \models \bigcirc \bigcirc \neg b$ as $s_0 \models \neg b$ $\pi \not\models \Box a$ as $s_1 \not\models a$ as $\Box \Diamond \widehat{=}$ infinitely often $\pi \models \Box \Diamond a$

LTLSF3.1-7

$$AP = \{a, b\}$$

path $\pi = \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \dots$ $trace(\pi) = (\{a\} \emptyset)^{\omega}$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \not\models a \cup b$ $\pi \models \Diamond b \rightarrow (a \cup b)$ as $\pi \not\models \Diamond b$ as $s_0 \models \neg b$ $\pi \models \bigcirc \bigcirc \neg b$ $\pi \not\models \Box_a$ as $s_1 \not\models a$ as $\Box \Diamond \widehat{=}$ infinitely often $\pi \models \Box \Diamond a$ $\pi \models \Diamond \Box a$?

LTLSF3.1-7

$$AP = \{a, b\}$$

 $trace(\pi) = (\{a\} \varnothing)^{\omega}$ path $\pi = \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_0 \mathbf{s}_1 \dots$ as $s_0 \not\models b$ and $s_1 \not\models a \lor b$ $\pi \not\models a \cup b$ $\pi \models \Diamond b \rightarrow (a \cup b)$ as $\pi \not\models \Diamond b$ $\pi \models \bigcirc \bigcirc \neg b$ as $s_0 \models \neg b$ $\pi \not\models \Box a$ as $s_1 \not\models a$ as $\Box \Diamond \widehat{=}$ infinitely often $\pi \models \Box \Diamond a$ as $\square \cong$ eventually forever $\pi \not\models \Diamond \Box a$

LTLSF3.1-LTL-SEM-DERIVED

for $\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$:

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

$\sigma \models \Diamond \varphi$	iff	there exists $j \ge 0$ such that
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma\models\Box\varphi$	iff	for all $j \ge 0$ we have:
		$A_{j} A_{j+1} A_{j+2} \ldots \models \varphi$

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

$\sigma \models \Diamond \varphi$	iff	there exists $j \geq 0$ such that
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma \models \Box \varphi$	iff	for all $j \ge 0$ we have:
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma \models \Box \Diamond \varphi$	iff	there are infinitely many $j \ge 0$ s.t.
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$

for
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
:

$\sigma \models \Diamond \varphi$	iff	there exists $j \ge 0$ such that
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma\models\Box\varphi$	iff	for all $j \ge 0$ we have:
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma \models \Box \Diamond \varphi$	iff	there are infinitely many $j \ge 0$ s.t.
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$
$\sigma \models \Diamond \Box \varphi$	iff	for almost all $j \ge 0$ we have:
		$A_{j}A_{j+1}A_{j+2}\ldots\models\varphi$

LTLSF3.1-8

 $AP = \{a, b\}$

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$

LTLSF3.1-8

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$

 $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$

LTLSF3.1-8

$$AP = \{a, b\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) ?$$

LTLSF3.1-8

$$AP = \{a, b\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \text{ as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$

LTLSF3.1-8

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$ $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \text{ as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$

 $\pi \models \bigcirc \Box (a \leftrightarrow b) ?$

LTLSF3.1-8

$$AP = \{a, b\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \quad \text{as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$
$$\pi \models \bigcirc \Box (a \leftrightarrow b) \quad \text{as } s_1, s_2 \models a \leftrightarrow b$$

LTLSF3.1-8

$$AP = \{a, b\}$$

path $\pi = s_0 s_1 s_2 s_2 s_2 s_2 \ldots$ $trace(\pi) = \{a\} \varnothing \{a, b\}^{\omega}$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \quad \text{as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$
$$\pi \models \bigcirc \Box (a \leftrightarrow b) \quad \text{as } s_1, s_2 \models a \leftrightarrow b$$

 $\pi \models a \cup (\neg b \cup a) ?$

LTLSF3.1-8

$$AP = \{a, b\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \lor (a \land b)) \quad \text{as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$
$$\pi \models \bigcirc \Box (a \leftrightarrow b) \quad \text{as } s_1, s_2 \models a \leftrightarrow b$$
$$\pi \models a \lor (\neg b \lor a) \quad \text{as } s_0, s_2 \models a, s_1 \models \neg b$$

LTLSF3.1-8

$$AP = \{\mathbf{a}, \mathbf{b}\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \quad \text{as } s_1 \models \neg a \land \neg b \\ s_2 \models a \land b \\ \pi \models \bigcirc \Box (a \leftrightarrow b) \quad \text{as } s_1, s_2 \models a \leftrightarrow b \\ \pi \models a \cup (\neg b \cup a) \quad \text{as } s_0, s_2 \models a, s_1 \models \neg b \\ \pi \models \Diamond \Box (\neg a \rightarrow \Diamond \neg b) ?$$

LTLSF3.1-8

$$AP = \{\mathbf{a}, \mathbf{b}\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \lor (a \land b)) \text{ as } s_1 \models \neg a \land \neg b$$
$$s_2 \models a \land b$$
$$\pi \models \bigcirc \Box (a \leftrightarrow b) \text{ as } s_1, s_2 \models a \leftrightarrow b$$
$$\pi \models a \lor (\neg b \lor a) \text{ as } s_0, s_2 \models a, s_1 \models \neg b$$
$$\pi \models \Diamond \Box (\neg a \rightarrow \Diamond \neg b) \text{ as } s_2 s_2 s_2 \dots \models \neg a \rightarrow \Diamond \neg b$$

LTLSF3.1-8

$$AP = \{\mathbf{a}, \mathbf{b}\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \text{ as } s_1 \models \neg a \land \neg b$$

$$s_2 \models a \land b$$

$$\pi \models \bigcirc \Box (a \leftrightarrow b) \text{ as } s_1, s_2 \models a \leftrightarrow b$$

$$\pi \models a \cup (\neg b \cup a) \text{ as } s_0, s_2 \models a, s_1 \models \neg b$$

$$\pi \models \Diamond \Box (\neg a \rightarrow \Diamond \neg b) \text{ as } s_2 s_2 s_2 \dots \models \neg a \rightarrow \Diamond \neg b$$

$$\pi \models \Box (\neg b \rightarrow \bigcirc a) ?$$

LTLSF3.1-8

$$AP = \{\mathbf{a}, \mathbf{b}\}$$

$$\pi \models \bigcirc ((\neg a \land \neg b) \cup (a \land b)) \text{ as } s_1 \models \neg a \land \neg b$$

$$s_2 \models a \land b$$

$$\pi \models \bigcirc \Box (a \leftrightarrow b) \text{ as } s_1, s_2 \models a \leftrightarrow b$$

$$\pi \models a \cup (\neg b \cup a) \text{ as } s_0, s_2 \models a, s_1 \models \neg b$$

$$\pi \models \Diamond \Box (\neg a \rightarrow \Diamond \neg b) \text{ as } s_2 s_2 s_2 \dots \models \neg a \rightarrow \Diamond \neg b$$

$$\pi \not\models \Box (\neg b \rightarrow \bigcirc a) \text{ as } s_0 \models \neg b, s_1 \not\models a$$

LTLSF3.1-SEM-STATES

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

 $\pi = s_0 s_1 s_2 \dots \models \varphi$ iff $trace(\pi) \models \varphi$

interpretation of φ over states:

 $s \models \varphi$ iff $trace(\pi) \models \varphi$ for all $\pi \in Paths(s)$

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

 $\pi = s_0 s_1 s_2 \dots \models \varphi$ iff $trace(\pi) \models \varphi$

interpretation of φ over states:

 $s \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi \text{ for all } \pi \in Paths(s)$ $\text{iff} \quad s \models Words(\varphi)$

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

 $\pi = s_0 s_1 s_2 \dots \models \varphi$ iff $trace(\pi) \models \varphi$

interpretation of φ over states:

$$s \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi \text{ for all } \pi \in Paths(s)$$
$$\text{iff} \quad s \models Words(\varphi)$$

satisfaction relation for LT properties

given: TS $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states LTL formula φ over AP

interpretation of φ over infinite path fragments

$$\pi = s_0 s_1 s_2 \dots \models \varphi$$
 iff $trace(\pi) \models \varphi$

interpretation of φ over states:

$$s \models \varphi \quad \text{iff} \quad trace(\pi) \models \varphi \text{ for all } \pi \in Paths(s)$$
$$\text{iff} \quad s \models Words(\varphi)$$
$$\text{iff} \quad Traces(s) \subseteq Words(\varphi)$$

LTLSF3.1-SEM-TS

Which formulas hold for T?

LTLSF3.1-11

 $AP = \{a, b\}$

 $AP = \{a, b\}$

$\mathcal{T} \models \mathbf{a}$

 $AP = \{a, b\}$

 $\mathcal{T} \models \mathbf{a}$

as $s_0 \models a$ and $s_2 \models a$

LTLSF3.1-11

 $AP = \{a, b\}$

as $s_0 \models a$ and $s_2 \models a$

 $\mathcal{T} \models \Diamond \Box a$

 $\mathcal{T} \models \mathbf{a}$

Which formulas hold for \mathcal{T} ?

LTLSF3.1-11

 $AP = \{a, b\}$

as $s_0 \models a$ and $s_2 \models a$

 $\mathcal{T} \not\models \Diamond \Box_{a}$

 $\mathcal{T} \models \mathbf{a}$

S0 **S**1 S {**a**, **b**} {<mark>a</mark>} Ø

 $\mathcal{T} \not\models \Diamond \Box a$

 $AP = \{a, b\}$

as $s_0 \models a$ and $s_2 \models a$ as $s_0 s_1 s_0 s_1 \dots \not\models \Diamond \Box a$

LTLSF3.1-11

Which formulas hold for \mathcal{T} ?

LTLSF3.1-11

 $AP = \{a, b\}$

 $\mathcal{T} \models a$ as $s_0 \models a$ and $s_2 \models a$

 $\mathcal{T} \not\models \Diamond \Box a$ as **s**₀ **s**₁ **s**₀ **s**₁ ... ⊭ ◊□a

 $\mathcal{T} \models \Diamond \Box b \lor \Box \Diamond (\neg a \land \neg b)$

 $\mathcal{T} \models a$ as $s_0 \models a$ and $s_2 \models a$

 $\mathcal{T} \not\models \Diamond \Box a \qquad \text{ as } \mathbf{s_0} \, \mathbf{s_1} \, \mathbf{s_0} \, \mathbf{s_1} \dots \not\models \Diamond \Box a$

 $\mathcal{T} \models \Diamond \Box b \lor \Box \Diamond (\neg a \land \neg b) \text{ as } s_2 \models b, s_1 \not\models a, b$

 $AP = \{a, b\}$

Which formulas hold for \mathcal{T} ?

S1

Ø

S₀

{<mark>a</mark>}

 $\mathcal{T} \models \mathbf{a}$ as $s_0 \models a$ and $s_2 \models a$

So

{ <mark>a</mark>, **b**}

 $\mathcal{T} \not\models \Diamond \Box a$ as **s₀ s₁ s₀ s₁ ... ⊭ ◊□***a* $\mathcal{T} \models \Diamond \Box b \lor \Box \Diamond (\neg a \land \neg b)$ as $s_2 \models b$, $s_1 \not\models a, b$

 $\mathcal{T} \models \Box(a \rightarrow (\bigcirc \neg a \lor b))$

 $AP = \{a, b\}$

LTLSF3.1-11

 $\begin{array}{cccc} \mathcal{T} &\models a \\ \mathcal{T} &\models a \end{array} & \text{as } \mathbf{s}_0 \models a \text{ and } \mathbf{s}_2 \models a \\ \mathcal{T} &\not\models \Diamond \Box a & \text{as } \mathbf{s}_0 \, \mathbf{s}_1 \, \mathbf{s}_0 \, \mathbf{s}_1 \dots \not\models \Diamond \Box a \\ \mathcal{T} &\models \Diamond \Box b \, \lor \, \Box \Diamond (\neg a \land \neg b) & \text{as } \mathbf{s}_2 \models b, \, \mathbf{s}_1 \not\models a, b \end{array}$

 $\mathcal{T} \models \Box(a \rightarrow (\bigcirc \neg a \lor b))$ as $s_2 \models b$, $s_0 \models \bigcirc \neg a$

 $AP = \{a, b\}$

LTLSF3.1-11