Master of Science in Computer Science - University of Camerino Reactive Systems Verification A. Y. 2016/2017 Written Test of 12th July 2017 (Appello II)
 Teacher: Luca Tesei

EXERCISE 1 (6 points)
Consider the two following transition systems.

1. Draw the transition system resulting from their product using handshaking with the handshake action set $H=\{a, b\}$.

EXERCISE 2 (9 points)

Consider the alphabet $A P=\{A, B, C, D\}$ and the following linear time properties:
(a) Whenever A holds then B does not hold for two steps
(b) B and C hold together only finitely many times
(c) If C holds infinitely many times then D holds only finitely many times
(d) C holds at least once and whenever D holds also A must hold

For each property:

1. formalise it using set expressions and first order logic;
2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
3. tell if it is a safety, liveness or mixed property; in case it is a safety property provide an NFA for the language of the minimal bad prefixes.

EXERCISE 3

Consider the following transition system $T S$ on $A P=\{A, B, C\}$.

1. (3 points) Decide, for each LTL formula φ_{i} below, whether or not $T S \models \varphi_{i}$. Justify your answers! If $T S \not \vDash \varphi_{i}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{i}$.

$$
\begin{aligned}
& \varphi_{1}=\bigcirc \bigcirc A \\
& \varphi_{2}=\square(A \Rightarrow \diamond C) \\
& \varphi_{3}=\diamond \square(A \vee C)
\end{aligned}
$$

2. Consider the following fairness assumptions:

$$
\begin{array}{cc}
\psi_{1}^{\text {fair }}=\{\{ \},\{q\},\{r\}\} & \psi_{2}^{\text {fair }}=\{\{ \},\{r\},\{q\}\} \\
\psi_{3}^{\text {fair }}=\{\{ \},\{g\},\{e\}\} & \psi_{4}^{\text {fair }}=\{\{ \},\{ \},\{g, e\}\}
\end{array}
$$

(a) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{2}$ under the four different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3,4\}$, separately. Whenever $T S \not \vDash_{\text {fair }} \varphi_{2}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \nLeftarrow \varphi_{1}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.
(b) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{3}$ under the four different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3,4\}$, separately. Whenever $T S \not \vDash_{\text {fair }} \varphi_{3}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{6}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.

EXERCISE 4 (8 points)

Consider the following transition system

1. Calculate $\operatorname{Sat}(a \wedge(b \leftrightarrow c))$, $\operatorname{Sat}(\exists(c \vee b) \mathcal{U} a)$ and $\operatorname{Sat}(\exists \square(b \vee c))$. Justify your answers by showing the steps of the algorithm used for the CTL formulas.
