$\varepsilon \times 11$
Let's construct the product transition system.
The states of this product contains the three components of the original TSs. Trousitious belonging to $H=\{a, b, d\}$ must be done together by the involved compo tents.

Initial state:

Transitions are derived with the rubes:

$$
\begin{aligned}
& \frac{s \xrightarrow{\alpha} s^{\prime} t^{\alpha} \xrightarrow{\alpha} t^{\prime} \quad \alpha \in H}{\langle s, t\rangle \xrightarrow{\alpha}\left\langle s^{\prime}, t^{\prime}\right\rangle} \quad \frac{s \xrightarrow{\alpha} s^{\prime} \alpha \notin H}{\langle s, t,\rangle \xrightarrow{\alpha}\left\langle s^{\prime}, t\right\rangle} \\
& \frac{t \stackrel{\alpha}{\rightarrow} t^{\prime} \alpha \notin H}{\langle s, t\rangle \xrightarrow{\alpha}\left\langle s, t^{\prime}\right\rangle}
\end{aligned}
$$

$\varepsilon \times 2$
a) $E_{a}=\left\{A_{0} A_{1} \cdots \in\left(2^{A q}\right)^{w} \mid \forall i \in \mathbb{N}\right.$

$$
\left.A \in A_{i} \Rightarrow\left(B \in A_{i} \wedge B \in A_{i+1}\right)\right\}
$$

In $L T L: \square(A \rightarrow(B \wedge O B))$
This is a pure safety property. The NFA accepting the language of minimal bad prefixes is:

when 1 is the accepting state.
b)

$$
\begin{aligned}
E_{b}=\left\{A_{0} A_{1} \cdots \in\left(2^{A P}\right)^{\omega} \mid\right. & \left.\left\lvert\, \begin{array}{l}
\infty \\
\exists
\end{array}\right.\right) \mathbb{N}: B \in A_{i} \wedge \\
& \left.\forall J \in \mathbb{N}, C \notin A_{i}\right\}
\end{aligned}
$$

Ion LTL: $\square \diamond B \wedge>\square \neg C$
This is a pure livened property. To derive an NBA accepting the bad behaviours
we first negate the formula?

$$
\begin{aligned}
\neg(\square>B \wedge \diamond \square \neg C) \equiv & \Delta D \perp B \vee \\
& \square \prec C
\end{aligned}
$$

A simple NFA accepting this Carngrege is as follows:

when the set of initial states is $\{0,2\}$ and the set of accepting states is $\{1,3\}$.

$$
\text { c) } \begin{aligned}
& E_{c}=\left\{A_{0} A_{1} \cdots \in\left(2^{A P}\right) \omega \mid\right.\left(\exists_{i}, J \in \mathbb{N}: i \neq J \wedge\right. \\
&\left.A \in A_{i} \wedge A \in A_{J}\right) \wedge \\
&\left(\forall \kappa \in \mathbb{N}: B \in A_{k} \Rightarrow\left(\in A_{k}\right)\right. \\
&\}
\end{aligned}
$$

$I_{m} L T L: \Delta(A \wedge O(\diamond A)) \wedge D(B \rightarrow C)$
This is a mixed propaty.
Ex3 The paths of the $T S$ one the following:

$$
\begin{aligned}
& \pi_{\infty}:\left((04)^{+} 4^{*}\right)^{\omega} \quad \pi_{3}:(213)^{\omega} \\
& \pi_{1}:\left((04)^{+} 4^{*}\right)^{+}(321)^{\omega} \\
& \pi_{2}:\left(0\left(4^{+}\right)\right)^{+}(132)^{\omega}
\end{aligned}
$$

The formure $\varphi=\diamond\left(b l_{c}\right)$ is satisfied only by the paths of type π_{1}, π_{2} and π_{3}, where the stroughy connected component $\{1,2,3\}$ is reacheol. Let's consider Ψ_{I} fail: the strong foirmes of γ can exclude the paths of the form T_{1}, but not all of them. In particular the path OC ${ }^{\omega}$ is still fair, so this pooh is a contr example to show TS $\not_{\psi_{1} \text { ain }} \varphi$. Let's consider for: Week foirmen on α is trivially satisfied by the paths of the
form π_{1}, so again

$$
\text { TS } \#_{\psi_{2} f_{\text {air }}} \varphi
$$

where (04) ${ }^{\omega}$ is a counterexample path. Lets consider $\psi_{3}^{\text {for. In this case, strong for }=~}$ men of both α and β replies that from the paths of the form T_{1}, which satisfy the enabling condition "infinitely many times α or β cnobled", α or β must be taken infinitely many times. This is deonly impossible, so these paths are all unfair. Thus:

$$
\text { TS } \vDash_{\psi_{3} \text { foil }} \varphi
$$

Timely, $\quad \psi_{4}^{\text {fair }}$ has strong fairnen of α surd weak faironen of γ. While a cat of paths of the form π_{1} will be excluded by the strong fairmen of α, still some paths, e.g. 04^{ω}, are fair so $T S \nLeftarrow \neq 4$ fair φ.
$\underline{\varepsilon}+4$ First of ale we have to put the fonmule in EXISTENTIAL NORHAL FORM:

$$
\begin{aligned}
& \forall(a \mu b) \vee \exists O(\forall \sqcap b) \\
& \equiv\{\forall D \varphi \equiv \neg \exists>\neg \varphi\} \\
& \forall(a \mu b) \vee \exists \circ(7 \exists \diamond \neg b) \\
& \equiv\left\{\forall \psi_{1} M \psi_{2} \equiv \neg \exists\left(\neg \psi_{2} M\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right) \wedge\right. \\
& \left.\neg \exists \square \neg \psi_{2}\right\} \\
& (\neg \exists(7 b M(7 a \wedge 7 b)) \wedge \neg \exists 円 \neg b) v \\
& (\exists 0(\neg \exists \text { time } M \neg b)) \\
& \operatorname{Sat}(a)=\left\{s_{1}, s_{2}\right\} \quad \operatorname{Sat}(7 \theta)=\left\{s_{0}, s_{3}, s_{4}\right\} \\
& \operatorname{Sat}(b)=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \quad \operatorname{Sat}(7 b)=\left\{s_{0}, s_{1}\right\} \\
& \operatorname{Sat}(1 a \wedge 1 b)=\left\{S_{0}, S_{3}, S_{4}\right\} \cap\left\{S_{0}, S_{2}\right\}=\left\{S_{0}\right\}
\end{aligned}
$$

Sat $(\exists \neg b M(1 a \wedge \neg b))$: bast fixpoint computation $T_{0}=\left\{s_{0}\right\}, \quad T_{1}=\left\{s_{0}\right\} \leqslant$ Solution.

$$
\operatorname{Sat}\left(\neg \exists \neg b M(\neg a \wedge \neg b)=S-\left\{S_{0}\right\}=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}\right.
$$

Sat $(\exists 』 \neg b)$; greatest fixpoint computation:

$$
T_{0}=\left\{s_{0}, s_{2}\right\}, T_{1}=\left\{s_{0}\right\}, T_{2}=\{ \}, \quad T_{3}=\{ \}
$$

Solution: $\}$.

$$
\begin{aligned}
& \operatorname{Sat}(\eta \exists \square \neg b)=S-\{ \}=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\} \\
& S_{a t}(\eta \exists \neg b M(7 a \wedge \neg b) \wedge \neg \exists 円 \neg b)= \\
& \left\{S_{2}, S_{2}, S_{3}, S_{4}\right\} \cap\left\{S_{0}, S_{2}, S_{2}, S_{3}, S_{4}\right\}=\left\{S_{2}, S_{2}, S_{3}, S_{4}\right\}
\end{aligned}
$$

Sat $(\exists$ true $M, 7 b)$; least fixpoint computation:

$$
\begin{aligned}
& T_{0}=\left\{S_{0}, S_{1}\right\}, T_{1}=\left\{S_{0}, s_{2}, s_{3}\right\}, \quad T_{2}=\left\{s_{0}, s_{2},\right. \\
& \left.s_{3}, s_{2}\right\}, T_{3}=\left\{s_{0}, s_{1}, s_{3}, s_{2}\right\} \& \text { Solution. }
\end{aligned}
$$

$\operatorname{Sat}(\neg \exists$ true $M \neg b)=S-\left\{s_{0}, s_{1}, s_{3}, s_{2}\right\}=\left\{s_{4}\right\}$
$\operatorname{Sat}\left(\exists O\left(7 \exists\right.\right.$ true $\left.M_{\imath} b\right)=\left\{S_{0}, S_{a}\right\}=$

$$
\begin{align*}
& \left\{s \in S \mid \operatorname{Succ}(s) \cap\left\{s_{4}\right\} \neq \phi\right\} \\
& \operatorname{Sat}(\varphi)=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \cup\left\{s_{0}, s_{4}\right\}
\end{align*}
$$

