General Picture of LTL Model Checking with Büchi Automata

Luca Tesei

Reactive Systems Verification

MSc in Computer Science

University of Camerino

Topics

- Automata-based LTL model checking. General picture.
- From LTL formulas to NBAs. Examples.
- NFA and NBA for safety properties.
- Examples of LTL model checking with NBA.
- LTL model checking complexity (without proof).

Material

Reading:

Chapter 5 of the book, Section 5.2.

More:

The slides in the following pages are taken from the material of the course "Introduction to Model Checking" held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

```
Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
  syntax and semantics of LTL
   automata-based LTL model checking
  complexity of LTL model checking
Computation-Tree Logic
Equivalences and Abstraction
```

LTLMC3.2-19

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$

LTLMC3.2-19

LTL model checking problem

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

$$\pi \not\models \varphi$$

LTLMC3.2-19

LTL model checking problem

given: finite transition system T over AP

(without terminal states) LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

basic idea: try to refute $T \models \varphi$ by searching

for a path π in T s.t.

 $\pi \not\models \varphi$, i.e., $\pi \models \neg \varphi$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)

2. search a path π in T with $trace(\pi) \in Words(\neg \varphi)$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with $trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$

given: finite transition system T over AP

LTL-formula φ over AP

question: does $T \models \varphi$ hold ?

- 1. construct an **NBA** \mathcal{A} for *Words*($\neg \varphi$)
- 2. search a path π in T with

$$trace(\pi) \in Words(\neg \varphi) = \mathcal{L}_{\omega}(\mathcal{A})$$

construct the product-TS $\mathcal{T} \otimes \mathcal{A}$ search a path in the product that meets the acceptance condition of \mathcal{A}

Safety and LTL model checking

LTLMC3.2-20

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$

Safety and LTL model checking

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{\mathcal{E}}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$\overline{Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})} = \emptyset$	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for $\stackrel{E}{\mathcal{L}}(\mathcal{A}) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$\overline{\mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A})} = \varnothing$	$Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	

safety property <i>E</i>	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	persistence checking in the product $T \otimes A \models \Diamond \Box \neg F$?

Safety and LTL model checking LTLMC3.2-20	
safety property E	LTL-formula $arphi$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$Traces_{fin}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \emptyset$	$Traces(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product $T \otimes A \models \Box \neg F$?	persistence checking in the product $T \otimes A \models \Diamond \Box \neg F$?
error indication: $\widehat{\pi} \in Paths_{fin}(\mathcal{T})$ s.t. $trace(\widehat{\pi}) \in \mathcal{L}(\mathcal{A})$	

safety property E	LTL-formula $oldsymbol{arphi}$
NFA for the bad prefixes for E $\mathcal{L}(A) \subseteq (2^{AP})^+$	NBA for the "bad behaviors" $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\neg \varphi)$
$\mathit{Traces}_{\mathit{fin}}(\mathcal{T}) \cap \mathcal{L}(\mathcal{A}) = \varnothing$	$\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$
invariant checking in the product	persistence checking in the product

in the product $T \otimes A \models \Box \neg F ?$ error indication: $\widehat{\pi} \in Paths_{fin}(T)$ s.t. $trace(\widehat{\pi}) \in \mathcal{L}(A)$ in the product $T \otimes A \models \Diamond \Box \neg F ?$ error indication: prefix of a path π

Safety vs LTL model checking

LTLMC3.2-10

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(A) = \emptyset$

where A is an NFA for the bad prefixes

$$\mathcal{T} \models \mathsf{LTL} ext{-formula } arphi$$
 iff $\mathit{Traces}(\mathcal{T}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$

where \mathcal{A} is an NBA for $\neg \varphi$

 $T \models \text{safety property } E$ iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$ iff there is \underline{no} path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$ in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

$$T \models \mathsf{LTL} ext{-formula}\ arphi$$
 iff $\mathit{Traces}(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$ iff there is $\underline{\mathsf{no}}\ \mathsf{path}\ \langle s_0, q_0 \rangle \, \langle s_1, q_1 \rangle \, \langle s_2, q_2 \rangle \dots$ in $T \otimes \mathcal{A}\ \mathsf{s.t.}\ q_i \in F$ for infinitely many $i \in \mathbb{N}$

 $T \models LTL$ -formula φ

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff there is \underline{no} path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$

in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

iff $T \otimes \mathcal{A} \models \Box \neg F$

iff
$$Traces(T) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$$

iff there is no path $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \langle s_2, q_2 \rangle \dots$
in $T \otimes \mathcal{A}$ s.t. $q_i \in F$ for infinitely many $i \in \mathbb{N}$
iff $T \otimes \mathcal{A} \models \Diamond \Box \neg F$

$$T \models \text{safety property } E$$

iff $Traces_{fin}(T) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

iff there is no path fragment $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \dots \langle s_n, q_n \rangle$

in $T \otimes \mathcal{A}$ s. t. $q_n \in F$

iff $T \otimes \mathcal{A} \models \Box \neg F \longleftarrow$ invariant checking

iff
$$Traces(T) \cap \mathcal{L}_{\omega}(A) = \emptyset$$

 $T \models LTL$ -formula φ

iff there is <u>no</u> path $\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \langle s_2, q_2 \rangle \dots$ in $\mathcal{T} \otimes \mathcal{A}$ s.t. $q_i \in F$ for infinitely many $i \in \mathbb{N}$

iff $T \otimes A \models \Diamond \Box \neg F \longleftarrow$ persistence checking

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0 A_1 A_2 \ldots \in \Sigma^{\omega}:

state sequence \pi = q_0 q_1 q_2 \ldots where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for i \geq 0
```

run π is accepting if $\stackrel{\infty}{\exists} i \in \mathbb{N}$. $q_i \in F$

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\text{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

NBA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}_{\omega}(\mathcal{A}) \subseteq \Sigma^{\omega}$ is given by:

$$\mathcal{L}_{\omega}(\mathcal{A}) \stackrel{\text{def}}{=}$$
 set of infinite words over Σ that have an accepting run in \mathcal{A}

From LTL to NBA

LTLMC3.2-THM-LTL-2-NBA

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

$$Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$$

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

- $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$
- $size(A) = \mathcal{O}(\exp(|\varphi|))$

For each LTL formula φ over AP there is an NBA \mathcal{A} over the alphabet 2^{AP} such that

- $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A})$
- $size(A) = \mathcal{O}(\exp(|\varphi|))$

proof: ... later ...

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg_{\mathsf{a}})$$

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(a \lor b)$$

$$q_F$$
 b q_1 b

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$q_0$$
 true q_1 q_F true

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\bigcirc \neg a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \textit{Words}(a \lor b)$$

$$q_F$$
 b q_1 b

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\square_{\mathsf{a}})$$

$$\mathcal{L}_{\omega}(\mathcal{A})=$$
 ?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

e.g.,
$$\varnothing \varnothing \varnothing \varnothing \ldots = \varnothing^{\omega}$$

$$(\{a\} \{b\})^{\omega}$$

are accepted by ${\cal A}$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box \lozenge a)$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\Box(a \rightarrow \Diamond b))$$

e.g.,
$$\varnothing \varnothing \varnothing \varnothing \ldots = \varnothing^{\omega}$$

$$(\{a\} \{b\})^{\omega}$$

are accepted by ${\cal A}$

$$\mathcal{L}_{\omega}(\mathcal{A}) =$$
?

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\lozenge \square_{\mathsf{a}})$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathit{Words}(\lozenge \square_{\mathsf{a}})$$

possible runs for $\{a\}^{\omega}$

```
      q0
      q0
      q0
      q0
      q0
      ...

      q0
      q1
      q1
      q1
      q1
      ...

      q0
      q0
      q1
      q1
      q1
      q1
      ...

      q0
      q0
      q0
      q1
      q1
      q1
      ...

      :
      :
      :
      ...
      ...
```

not accepting accepting accepting accepting

NFA and NBA for safety properties

LTLMC3.2-6

Let \mathcal{A} be an **NFA** for the language of all bad prefixes for a safety property \mathcal{E} .

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E$$

Example: $E \cong$ "never **a** twice in a row"

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

Let \mathcal{A} be an **NFA** for the language of all bad prefixes for a safety property \mathcal{E} . Then:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes even if A is a non-blocking DFA

$$\mathcal{L}_{\omega}(\mathcal{A}) = \overline{E} = (2^{AP})^{\omega} \setminus E = Words(\neg \varphi)$$

wrong, if $\mathcal{L}(A)$ = language of minimal bad prefixes even if A is a non-blocking DFA

Recall: product transition system

$$T = (S, Act, \rightarrow, S_0, AP, L)$$

 $A = (Q, 2^{AP}, \delta, Q_0, F)$

TS without terminal states NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

Recall: product transition system

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 TS without terminal states $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

product-TS
$$T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 TS without terminal states $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

product-TS
$$T \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$
labeling: $AP' = Q, L'(\langle s, q \rangle) = \{q\}$

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 TS without terminal states $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NBA or NFA non-blocking, $Q_0 \cap F = \emptyset$

product-TS
$$T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \rightarrow', S'_0, AP', L')$$

initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$
labeling: $AP' = Q, L'(\langle s, q \rangle) = \{q\}$

transition relation:

$$\frac{s \xrightarrow{\alpha} s' \land q' \in \delta(q, L(s'))}{\langle s, q \rangle \xrightarrow{\alpha}' \langle s', q' \rangle}$$

LTL formula $\varphi = \Box \Diamond$ green

Example: LTL model checking

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$\mathcal{T} \not\models \varphi$$

LTL formula
$$\varphi = \Box(try \rightarrow \Diamond del)$$

"each (repeatedly) sent message will eventually be delivered"

$$T \not\models \varphi$$

reachable fragment of the product-TS

set of atomic propositions $AP' = \{q_0, q_1, q_F\}$

Example: LTL model checking

LTLMC3.2-9

Example: LTL model checking

LTLMC3.2-9

Complexity of LTL model checking

main steps of automata-based LTL model checking:

construction of an NBA ${\cal A}$ for $\neg \varphi$

persistence checking in the product $T \otimes A$

construction of an NBA \mathcal{A} for $\neg \varphi$

 $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$

construction of an NBA \mathcal{A} for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$ persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

construction of an NBA
$$\mathcal{A}$$
 for $\neg \varphi$ $\longleftarrow \mathcal{O}(\exp(|\varphi|))$

persistence checking in the product $\mathcal{T} \otimes \mathcal{A}$ $\longleftarrow \mathcal{O}(\operatorname{size}(\mathcal{T}) \cdot \operatorname{size}(\mathcal{A}))$

complexity: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

product $T \otimes A$

The LTL model checking problem is **PSPACE**-complete

- P = class of decision problem solvable in deterministic polynomial time
- **NP** = class of decision problem solvable in nondeterministic polynomial time

NPC = class of NP-complete problems

NPC = class of **NP**-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) \boldsymbol{L} is \boldsymbol{NP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{NP}$

NPC = class of NP-complete problems

- $(1) \quad \mathbf{L} \in \mathbf{NP}$
- (2) L is NP-hard, i.e., $K \leq_{poly} L$ for all $K \in NP$

$$coNP = \{ \overline{L} : L \in NP \}$$
complement of L

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

- (1) $L \in coNP$
- (2) \boldsymbol{L} is \boldsymbol{coNP} -hard, i.e., $\boldsymbol{K} \leq_{\boldsymbol{poly}} \boldsymbol{L}$ for all $\boldsymbol{K} \in \boldsymbol{coNP}$

LTLMC3.2-72A

coNPC = class of **coNP**-complete problems

coNP-hardness

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

proof by a polynomial reduction

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

complement of the LTL model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

proof by a polynomial reduction

complement of the **LTL** model checking problem:

given: finite transition system T, LTL-formula φ question: does $T \not\models \varphi$ hold ?

Complexity of LTL model checking

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is PSPACE-complete

The complexity class *PSPACE*

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

NP ⊆ PSPACE

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

NP ⊆ PSPACE

DFS-based analysis of the computation tree of an *NP*-algorithm

space requirements:

- NP ⊆ PSPACE
- *PSPACE* = *coPSPACE* (holds for any deterministic complexity class)

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- **PSPACE** = **NPSPACE** (Savitch's Theorem)

LTLMC3.2-74

The complexity class *PSPACE*

PSPACE = class of decision problems solvable by a deterministic polynomially space-bounded algorithm

- NP ⊆ PSPACE
- PSPACE = coPSPACE
 (holds for any deterministic complexity class)
- PSPACE = NPSPACE (Savitch's Theorem)

To prove $L \in PSPACE$ it suffices to provide a nondeterministic polynomially space-bounded algorithm for the complement \overline{L} of L

