General Picture of LTL Model Checking with Biichi
Automata

Luca Tesei

Reactive Systems Verification

MSc in Computer Science

University of Camerino

Topics
e Automata-based LTL model checking. General picture.
e From LTL formulas to NBAs. Examples.
e NFA and NBA for safety properties.
e Examples of LTL model checking with NBA.

e LTL model checking complexity (without proof).

Material
Reading:

Chapter 5 of the book, Section 5.2.

More:

The slides in the following pages are taken from the material of the course “Introduction to Model Check-
ing” held by Prof. Dr. Ir. Joost-Pieter Katoen at Aachen University.

OverView OVERVIEW5.2

Introduction

Modelling parallel systems
Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)

syntax and semantics of LTL
automata-based LTL model checking «—
complexity of LTL model checking

Computation-Tree Logic

Equivalences and Abstraction

1/527

LTL model checking problem LTLMCS 219

2/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

3/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢

4/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.

Tl

5/527

LTL model checking problem

LTLMC3.2-19

given: finite transition system 7" over AP

(without terminal states)
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

basic idea: try to refute T |= ¢ by searching
for a path 7 in 7 s.t.

wEp, e, TE

6 /527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)

7/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—)

2. search a path 7 in 7 with
trace(mw) € Words(—y)

8/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path 7 in 7 with
trace(mw) € Words(—yp) = L,(A)

9/527

The LTL model checking problem LTLMCB.2-19A

given: finite transition system 7" over AP
LTL-formula ¢ over AP

question: does T |= ¢ hold ?

1. construct an NBA A for Words(—p)
2. search a path w in 7 with
1 trace(m) € Words(—p) = L,,(A)

construct the product-TS 7 ® A
search a path in the product that meets
the acceptance condition of A

10/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

N

LTL model checking

does T |= ¢ hold ?

S N

yes no

11/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
, yd

LTL model checking

does T |= ¢ hold ?

S N

yes no

12/527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
(/

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N

yes no

13 /527

Automata-based LTL model checking LTLMCS 218

finite transition
system T LTL formula ¢

NBA A for -p
“bad behaviors”
f y

LTL model checking

via persistence checking
T® A E “00 no final state” ?

S N\

yes no + error indication

14 /527

Safety and LTL model checking

15 /527

Safety and LTL model checking

safety property E LTL-formula ¢

16 /527

Safety and LTL model checking

safety property E LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*

17 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

18 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesi,(T) N L(A) = @

19/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the
bad prefixes for E “bad behaviors”
L(A) C (2#P)*+ L,(A) = Words(—p)
Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

20/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking
in the product

21/527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product

TRA=0O-F ? TRA = OO-F ?

22 /527

Safety and LTL model checking

safety property E LTL-formula ¢
NFA for the NBA for the

bad prefixes for E “bad behaviors”

L(A) C (2#P)*+ L,(A) = Words(—p)

Tracesin(T)NL(A) =2 | Traces(T)NL,(A) =2

invariant checking persistence checking
in the product in the product
TRA=0O-F ? TRA = OO-F ?

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)

23 /527

Safety and LTL model checking

safety property E

LTLMC3.2-20

LTL-formula ¢

NFA for the
bad prefixes for E

L(A) € (2*°)*

NBA for the
“bad behaviors”

L,(A) = Words(—p)

Tracesgn(T) N L(A) = @

Traces(T)NL,(A) =2

invariant checking
in the product

persistence checking
in the product

error indication:
7 € Pathsgn(T)
s.t. trace(T) € L(A)

error indication:
prefix of a path 7

s.t. trace(m) € L,(A)

24 /527

Safety vs LTL model checking LTLMC3.2-10

25 /527

Safety vs LTL model checking LTLMC3.2-10

T |= safety property E
iff Tracesi(T)NL(A) = &

where A is an NFA for the bad prefixes

T |= LTL-formula ¢
iff Traces(T)N L,(A) =@

where A is an NBA for —p

26 /527

Safety vs LTL model checking

LTLMC3.2-10

T |= safety property E
iff Tracesi(T)NL(A) = &

iff there is no path fragment (o, qo) {(S1, 1) - - - (Sn, n)
n7®As. t. g, €F

T |= LTL-formula ¢
iff Traces(T)N L,(A) =@

iff there is no path (s, qo) (51, q1) {52, @2) - ..
in7T ® As.t. g € F for infinitely many i € N

27 /527

Safety vs LTL model checking LTLMC3.2-10

iff
iff

iff

T |= safety property E
Tracesin(T) N L(A) = 2

there is no path fragment (s, qo) {s1, q1) - - - {Sn, Gn)
n7®As. t. g, €F

T®AEDO-F

iff
iff

iff

T |= LTL-formula ¢
Traces(T)N L, (A) =D

there is no path (so, qo) {51, q1) (2, @) - - -
in7T ® As.t. g € F for infinitely many i € N

T® Al 00-F

28 /527

Safety vs LTL model checking LTLMC3.2-10

iff
iff

iff

T |= safety property E
Tracesin(T) N L(A) = 2

there is no path fragment (s, qo) {s1, q1) - - - {Sn, Gn)
n7®As. t. g, €F

T Q® AEDO-F «—| invariant checking

iff
iff

iff

T |= LTL-formula ¢
Traces(T)N L, (A) =D

there is no path (so, qo) {51, q1) (2, @) - - -
in7T ® As.t. g € F for infinitely many i € N

T Q® A Q0O-F «——| persistence checking

29 /527

Recall: nondeterministic Buchi automata ..o

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

o Q C Q set of initial states

o [C Q@ set of final states, also called accept states

30/527

Recall: nondeterministic Buchi automata ..o

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

o Q C Q set of initial states

o [C Q@ set of final states, also called accept states

run for a word Ag A1 Ay ... € 2¥:

state sequence T = qo q1 G> ... where o € @
and gi+1 € 6(qi, A;) fori >0

00
run 7 is accepting if 31 € N. q; € F

31/527

Recall: nondeterministic Buchi automata ..o

NBA A=(Q,%,4, Q, F)

e @ finite set of states

e 2 alphabet

e d:Q x X — 29 transition relation

o Q C Q set of initial states

o [C Q@ set of final states, also called accept states

accepted language £,(A) C X¥ is given by:

L, (A) %f set of infinite words over ¥ that have
an accepting run in A

32/527

Recall: nondeterministic Buchi automata

NBA A = (Q, %, 8, Qo, F)

e @ finite set of states

e 2 alphabet «—

e d:Q x X — 29 transition relation

here: ¥ = 24P

e Q@ C Q@ set of initial states

o [C Q@ set of final states, also called accept states

DEF-NBA

accepted language £,(A) C X“ is given by:

L,(A) %f set of infinite words over T that have
an accepting run in A

33 /527

From LT L tO N B A LTLMC3.2-THM-LTL-2-NBA

34 /527

From LT L tO N B A LTLMC3.2-THM-LTL-2-NBA

For each LTL formula ¢ over AP there is an
NBA A over the alphabet 24P such that

Words(p) = L.(A)

35/527

From LT L tO N B A LTLMC3.2-THM-LTL-2-NBA

For each LTL formula ¢ over AP there is an
NBA A over the alphabet 24P such that

o Words(p) = L,(A)
o size(A) = O(exp(|¢|))

36 /527

From LT L tO N B A LTLMC3.2-THM-LTL-2-NBA

For each LTL formula ¢ over AP there is an
NBA A over the alphabet 24P such that

o Words(p) = L,(A)
o size(A) = O(exp(|¢|))

proof: ... later ...

37 /527

NBA for LTL formulas

(02

LTLMC3.2-3

true

@ true

N

qar

) LuA) = ?

38 /527

NBA for LTL formulas LTLMO3.2-3

true
\@ true @ A lgr D L,(A) = Words((O—a)

39 /527

NBA for LTL formulas LTLMO3.2-3

true

qo)—true @ A lgr D L,(A) = Words((O—a)

aF

PF

40 /527

NBA for LTL formulas LTLMO3.2-3

true

qo)—true @ A lgr D L,(A) = Words((O—a)

aF

PF

L,(A) = Words(aV b)

41/527

NBA for LTL formulas

DEL¥NE g

N

LTLMC3.2-3

L,(A) = Words((O—a)

aF

PF

L,(A) = Words(aV b)

Lo(A)="7

42 /527

NBA for LTL formulas

DEL¥NE g

N

LTLMC3.2-3

L,(A) = Words((O—a)

aF

PF

L,(A) = Words(aV b)

L,(A) = Words((a)

43 /527

NBA for LTL formulas]

a

q
9 -a Q L.,(A) = ?

—a a

44 /527

NBA for LTL formulas]

a

9 =3 Cl) L,(A) = Words(O¢a)

—a a

45 /527

NBA for LTL formulas

a

LTLMC3.2-4

9 =3 Cl) L,(A) = Words(O¢a)
-a a
N\ aA-b

Co) b e L(A)="7

46 /527

NBA for LTL formulas]

a

9 =3 Cl) L,(A) = Words(O¢a)

—a a

qo0
Oy ew-?
-aVhb -b
eg, BODD...=2%

({a}{b})*

} are accepted by A

47 /527

NBA for LTL formulas]

a

9 =3 Cl) L,(A) = Words(O¢a)

—a a

do
U L,(A) = Words(O(a — Ob))

-aVb -b

eg., BODD...=2%

({a}{b})*

} are accepted by A

48 /527

NBA for LTL formula LTLMC3.2-5

g 3 q
O 8 L,(A)="7

true a true

do a

49 /527

NBA for LTL formula LTLMC3.2-5

do a

q 2 @
() L,(A) = Words(¢Oa)

true a true

50 /527

NBA for LTL formula

g2 q _'a@
U

true a true

possible runs for {a}*

do 9o 90 qo0 90 90 ---
90 91 41 1 q1 91 -..
90 90 91 1 G1 q1 --.
do 90 90 91 q1 91 ---

LTLMC3.2-5

L,(A) = Words(¢Oa)

not accepting
accepting
accepting
accepting

51/527

NFA and NBA for safety properties LTLMCS.2-6

52 /527

NFA and NBA for safety properties LTLMCS.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E.

53 /527

NFA and NBA for safety properties LTLMCS.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:

Lo(A) = E = (2*)“\E

54 /527

NFA and NBA for safety properties LTLMCS.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:

Lo(A) = E = (2*)“\E

Example: E = “never a twice in a row”

a [/~ a
qo \31/ q2

@)

true true

55 /527

NFA and NBA for safety properties LTLMCS.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:

L,(A) = E = (2”P)°\ E = Words(—y)

Example: E = “never a twice in a row”

qo)—2 @ . ¢=0(a— O—a)

U

true true

56 /527

NFA and NBA for safety properties LTLMC3.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:
L,(A) = E = (2”P)°\ E = Words(—y)

wrong, if £(.A) = language of minimal bad prefixes

Example: E = “never a twice in a row”

qo)—2 @ . ¢ =0(a— O-a)
U

true true

57 /527

NFA and NBA for safety properties LTLMC3.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:
L,(A) = E = (2”P)°\ E = Words(—y)

wrong, if £(.A) = language of minimal bad prefixes

Example: E = “never a twice in a row”

0o) —2 (@1) —2 g true@ L,(A) =92

N

—a true

58 /527

NFA and NBA for safety properties LTLMC3.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:

L,(A) = E = (2”P)°\ E = Words(—y)

wrong, if £(.A) = language of minimal bad prefixes
even if A is a non-blocking DFA

Example: E = “never a twice in a row”

Q0 a @ a @ true @ Lw(A) —

—a true

59 /527

NFA and NBA for safety properties LTLMC3.2-6

Let A be an NFA for the language of all bad prefixes
for a safety property E. Then:

L,(A) = E = (2”P)°\ E = Words(—y)

wrong, if £(.A) = language of minimal bad prefixes
even if A is a non-blocking DFA

Example: E = “never a twice in a row”

a
=Sl ””e@ Lo(A) =2
O
-a

true

60 /527

LTL model checking LTLMCB.2-24

LTL formula ¢

finite transition

system 7
\ / NBA A for ¢

LTL model checking

persistence checking

TRAEOO-F?

/ N

yes no + counterexample

61/527

LTL model checking LTLMCB.2-24

LTL formula ¢

finite transition
system 7

later

\ /NBAAfor —p

LTL model checking

persistence checking

TRAEOO-F?

/ N

yes no + counterexample

62 /527

Recall: product transition system LTLAC3.2-7

T = (S, Act,—,Sp, AP, L) TS without terminal states

A=(Q,2%P,5, Qv, F) NBA or NFA
non-blocking, @ NF =&

63 /527

Recall: product transition system LTLAC3.2-7

T = (S, Act,—,Sp, AP, L) TS without terminal states

A=(Q,2%P,5, Qv, F) NBA or NFA
non-blocking, @ NF =&

def

product-TST ® A = (5xQ, Act,—', S5, AP, L")

64 /527

Recall: product transition system LTLAC3.2-7

T = (S, Act,—,Sp, AP, L) TS without terminal states

A=(Q,2%P,5, Qv, F) NBA or NFA
non-blocking, @ NF =&

def

product-TST ® A = (5xQ, Act,—', S5, AP, L")

initial states: Sy = {(s0,9) : 50 € S0, q € 6(Qo, L(s0))}
labeling: AP = Q, L'({s,q)) = {q}

65 /527

Recall: product transition system LTLAC3.2-7

T = (S, Act,—,Sp, AP, L) TS without terminal states
A=(Q,2%P,5, Qv, F) NBA or NFA
non-blocking, @ NF =&

def

product-TST ® A = (5xQ, Act,—', S5, AP, L")

initial states: Sy = {(s0,9) : 50 € S0, q € 6(Qo, L(s0))}
labeling: AP = Q, L'({s,q)) = {q}
transition relation:
s— s A ¢ €d(q,L(s))
(s,q) = (5, 4)

66 /527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

red

green

67 /527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen
NBA A for the complement
—p = Q0~green

. —green green
% ar @

true —green true

68 /527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

NBA A for the complement
—p = Q0~green
. o)_green green
° U0
U

true —green true

reachable fragment of the
product TS7T ® A

(dq) @=ra

69 /527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

NBA A for the complement
—p = Q0~green
. o)_green green
° U0
U

true —green true

initial states:
(red, @) where

q € 4(qo, L(red))

= (90, 2)
— {40, 9}

70 /527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

NBA A for the complement
—p = QL-green

ogreen o
' U '

—green true

transition
<greena qO) - (red, q)
q € 6(qo, L(red))

= (90, 2)
— = {q0, gr}

71/527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen
NBA A for the complement
—p = Q0~green
. @)_ereen green
° ar @
U

true —green true

atomic propositions

AP’ = {q07 ar, ql}
reen a obvious labeling function

72/527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

NBA A for the complement
—p = Q0~green
. @)_ereen green
° SO
U

true —green true

(dq) @=ia

T® Al OO-F

73/527

Example: LTL model checking LTINS 2.8

ST LTL formula ¢ = OQgreen

NBA A for the complement
—p = Q0~green
. @)_ereen green
° SO
U

true —green true

T® Al 0O-F

hence: T |= ¢
(dq) @=ia

74 /527

Example: LTL model checking
TS T

try_to_send

(lost) (delivered)

LTL formula ¢ = O(try — Odel)

“each (repeatedly) sent message will
eventually be delivered”

75 /527

Example: LTL model checking
TS T

_.{try_to_send

(Iost') (delivered)

LTL formula ¢ = O(try — Odel)

“each (repeatedly) sent message will
eventually be delivered”

Ty

76 /527

Example: LTL model checking

ST NBA A for ~p = O(try A O~del)

@tly A —del ar del @
U

(lost) (delivered) true —del true

try_to_send

LTL formula ¢ = O(try — Odel)

“each (repeatedly) sent message will
eventually be delivered”

Ty

77/527

Example: LTL model checking

ST NBA A for ~p = O(try A O~del)

@tly A —del ar del @
U

(lost) (delivered) true —del true

try_to_send

reachable fragment of the product-TS

78 /527

Example: LTL model checking

ST NBA A for ~p = O(try A O~del)

@tly A —del = del @
U

(lost) (delivered) true —del true

try_to_send

set of atomic propositions AP’ = {qo, 1, qr}

79/527

Example: LTL model checking

ST NBA A for ~p = O(try A O~del)

go) Y A2l g del @

(lost) (delivered) true —udel true

T®A EOO-F

80 /527

Example: LTL model checking

ST NBA A for ~p = O(try A O~del)

go) Y A2l g del @

(lost) (delivered) true —udel true

T®A [OO-F hence: T £ ¢

81/527

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

2/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

constructi?gr Ci;n NBA A — O(exp(|¢]))

persistence checking in the
product 7T ® A

3/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

4/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

construction of an NBA A
for

persistence checking in the
product 7T ® A

«— O(exp(l¢l))

— O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

5/187

Complexity of LTL model checking LTLMEB 271

main steps of automata-based LTL model checking:

constructi?(l)wr Cil;;n NBA A — O(exp(|¢]))

ersistence checking in the . .
pers! oroduct T é itl — O(size(T) - size(A))

complexity: O(size(T) - exp(|¢|))

The LTL model checking problem is
PSPACE-complete

6/187

Recall: complexity classes

9/187

Complexity classes P, NP

)

P = class of decision problem solvable in
deterministic polynomial time

NP

NP = class of decision problem solvable in
nondeterministic polynomial time

10/187

Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems

11/187

Complexity classes P, NP

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP

12 /187

Complexity classes P, NP

NP-hard
problems

7)
NP

NPC = class of NP-complete problems
T

(1) Le NP
(2) Lis NP-hard, i.e., K <po L for all K € NP

13 /187

Complexity classes P, NP, coNP

NP-hard
problems

coNP

coNP = {L[:Le NP}

complement of L

14 /187

Complexity classes P, NP, coNP

NP-hard
problems

\
=

coNP
J
coNPC = class of coNP-complete problems
T
(1) L€ coNP

(2) L is coNP-hard, i.e., K <poy L for all K € coNP

15/187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

16 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ®
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

17 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems
L ® e/
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

18 /187

Complexity classes P, NP, coNP

coNP-hard NP-hard
problems problems

LTL-MC LTL-MC
A
.
coNP
J
coNPC = class of coNP-complete problems

L is coNP-hard iff L is NP-hard

19/187

coNP-hardness LTLMC3.2-72

The LTL model checking problem is coNP-hard

20/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC
/ AN

Hamilton path complement of the
problem LTL model checking problem

21/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

22/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem
T
NP-complete

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

23/187

coNP-hardness LILMC3.2.72

The LTL model checking problem is coNP-hard

proof by a polynomial reduction

HP <py LTL-MC

/ AN
Hamilton path complement of the
problem LTL model checking problem

T
NP-complete NP-hard

complement of the LTL model checking problem:

given: finite transition system 7, LTL-formula ¢
question: does T [~ ¢ hold ?

24/187

Complexity of LTL model checking LTLMCB.2-73

We just saw:

The LTL model checking problem is coNP-hard

We now prove:

The LTL model checking problem is
PSPACE -complete

41/187

The complexity class PSPACE LEMC3.2-74

42 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

43/187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE

44 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

45 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
T

DFS-based analysis of the computation tree
of an NP-algorithm

space requirements:
recursion depth = height of computation tree

46 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

47 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

48 /187

The complexity class PSPACE LEMC3.2-74

PSPACE = class of decision problems solvable by a
deterministic polynomially space-bounded algorithm

e NP C PSPACE
e PSPACE = coPSPACE

(holds for any deterministic complexity class)

e PSPACE = NPSPACE (Savitch's Theorem)

T
To prove L € PSPACE it suffices to provide a

nondeterministic polynomially space-bounded
algorithm for the complement L of L

49 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h

)

- J

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

50 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
N\
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

51/187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

52 /187

Complexity classes P, NP, coNP, PSPACE

(PSPACE h
LTL-MC [TL-MC
N\
S
coNP
) NP
_ \ Y,

PSPACE = class of decision problems that are
decidable in deterministic polynomial space

53 /187

