Master of Science in Computer Science - University of Camerino
 Reactive Systems Verification A. Y. 2016/2017
 Written Test of 29th June 2017 (Appello I)
 Teacher: Luca Tesei

EXERCISE 1 (6 points)
Consider the following program graph

where x is a variable such that $\operatorname{dom}(x)=\{0,1,2\}, g_{0} \equiv(x=1), \operatorname{Loc}_{0}=\{A\}, \operatorname{Effect}(\alpha, \eta)=\eta[x:=0]$, $\operatorname{Effect}(\beta, \eta)=\eta[x:=\eta(x)-1]$ and $\operatorname{Effect}(\delta, \eta)=\eta[x:=\eta(x)+1]$.

1. Draw the transition system that is the semantics of the given program graph.

EXERCISE 2 (8 points)

Consider the alphabet $A P=\{A, B, C, D\}$ and the following linear time properties:
(a) Whenever A holds then B holds and C does not hold
(b) A and D hold together at least twice
(c) C holds at least once and only finitely many times
(d) Whenever B holds then after two steps C holds

For each property:

1. formalise it using set expressions and first order logic;
2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
3. tell if it is a safety, liveness or mixed property; in case it is a safety property provide an NFA for the language of the minimal bad prefixes.

EXERCISE 3

Consider the following transition system $T S$ on $A P=\{a, b, c\}$.

1. (3 points) Decide, for each LTL formula φ_{i} below, whether or not $T S \models \varphi_{i}$. Justify your answers! If $T S \not \vDash \varphi_{i}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{i}$.

$$
\begin{aligned}
& \varphi_{1}=\diamond b \\
& \varphi_{2}=\bigcirc \bigcirc(c \vee b) \\
& \varphi_{3}=\square(b \longrightarrow(\bigcirc \diamond c))
\end{aligned}
$$

2. Consider the following fairness assumptions written as LTL formulas:

$$
\psi_{1}^{\text {fair }}=\square \diamond c \longrightarrow \square \diamond b \quad \psi_{2}^{\text {fair }}=\square \diamond a \quad \psi_{3}^{\text {fair }}=\square \diamond b \longrightarrow((\square \diamond a) \wedge(\square \diamond c))
$$

(a) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{1}$ under the three different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3\}$, separately. Whenever $T S \not \forall_{\text {fair }} \varphi_{1}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{1}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.
(b) (3 points) Decide whether or not $T S \models_{\text {fair }} \varphi_{3}$ under the three different fairness conditions $\psi_{\text {fair }}^{i}, i \in\{1,2,3\}$, separately. Whenever $T S \not \vDash_{\text {fair }} \varphi_{6}$ provide a path $\pi \in \operatorname{Paths}(T S)$ such that $\pi \not \vDash \varphi_{6}$ and arguing that π is fair with respect to $\psi_{\text {fair }}^{i}$.

EXERCISE 4 (8 points)

Consider the following transition system

1. Calculate $\operatorname{Sat}(a \leftrightarrow b)$, $\operatorname{Sat}(\exists(a \vee b) \mathcal{U}(a \wedge b))$ and $\operatorname{Sat}(\exists \square(a \vee \neg b))$. Justify your answers by showing the steps of the algorithm used for the CTL formulas.
