Master of Science in Computer Science - University of Camerino Reactive Systems Verification A. Y. 2016/2017 Written Test of 29th June 2017 (Appello I) Teacher: Luca Tesei

EXERCISE 1 (6 points)

Consider the following program graph

where x is a variable such that dom(x) = {0, 1, 2}, g_0 \equiv (x = 1), Loc_0 = {A}, Effect(\alpha, \eta) = \eta[x := 0], Effect(\beta, \eta) = \eta[x := \eta(x) - 1] and Effect(\delta, \eta) = \eta[x := \eta(x) + 1].

1. Draw the transition system that is the semantics of the given program graph.

EXERCISE 2 (8 points)

Consider the alphabet $AP = \{A, B, C, D\}$ and the following linear time properties:

- (a) Whenever A holds then B holds and C does not hold
- (b) A and D hold together at least twice
- (c) C holds at least once and only finitely many times
- (d) Whenever B holds then after two steps C holds

For each property:

- 1. formalise it using set expressions and first order logic;
- 2. formalise it in LTL (you can use the operators next, until, box and diamond, together with all boolean connectives);
- 3. tell if it is a safety, liveness or mixed property; in case it is a safety property provide an NFA for the language of the **minimal** bad prefixes.

EXERCISE 3

Consider the following transition system TS on $AP = \{a, b, c\}$.

1. (3 points) Decide, for each LTL formula φ_i below, whether or not $TS \models \varphi_i$. Justify your answers! If $TS \not\models \varphi_i$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\begin{aligned} \varphi_1 &= \Diamond b\\ \varphi_2 &= \bigcirc \bigcirc (c \lor b)\\ \varphi_3 &= \Box (b \longrightarrow (\bigcirc \Diamond c)) \end{aligned}$$

2. Consider the following fairness assumptions written as LTL formulas:

$$\psi_1^{\text{fair}} = \Box \diamondsuit c \longrightarrow \Box \diamondsuit b \qquad \psi_2^{\text{fair}} = \Box \diamondsuit a \qquad \psi_3^{\text{fair}} = \Box \diamondsuit b \longrightarrow ((\Box \diamondsuit a) \land (\Box \diamondsuit c))$$

- (a) (3 points) Decide whether or not $TS \models_{\text{fair}} \varphi_1$ under the three different fairness conditions ψ_{fair}^i , $i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_1$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_1$ and arguing that π is fair with respect to ψ_{fair}^i .
- (b) (3 points) Decide whether or not $TS \models_{\text{fair}} \varphi_3$ under the three different fairness conditions ψ^i_{fair} , $i \in \{1, 2, 3\}$, separately. Whenever $TS \not\models_{\text{fair}} \varphi_6$ provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_6$ and arguing that π is fair with respect to ψ^i_{fair} .

EXERCISE 4 (8 points)

Consider the following transition system

1. Calculate $\operatorname{Sat}(a \leftrightarrow b)$, $\operatorname{Sat}(\exists (a \lor b)\mathcal{U}(a \land b))$ and $\operatorname{Sat}(\exists \Box (a \lor \neg b))$. Justify your answers by showing the steps of the algorithm used for the CTL formulas.