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More:
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Advanced model checking

Exponential distribution

Continuous r.v. X is exponential with parameter λ > 0 if its density is

f(x) = λ·e−λ·x for x > 0 and 0 otherwise

Cumulative distribution of X :

FX(d) =
∫ d

0
λ·e−λ·x dx = [−e−λ·x]d0 = 1 − e−λ·d

• Pr{X > d} = e−λ·d

• expectation E[X] =
R ∞

0 x·λ·e−λ·x dx = 1
λ

• variance Var[X] = 1
λ2

c⃝ JPK 1



Advanced model checking

Exponential pdf and cdf
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the higher λ, the faster the cdf approaches 1
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Advanced model checking

Exponential distributions

• have nice mathematical properties (cf. next slide)

• are adequate for many real-life phenomena
– describes the time for a continuous process to change state
– the time until you have your next car accident (failure rates)
– the inter-arrival times (i.e., the times between customers entering a shop)

• combinations can approximate general distributions arbitrarily closely

• maximal entropy probability distribution if just the mean is known
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CTMCs

A continuous-time Markov chain (CTMC) is a tuple (S,R, L) where:

• S is a finite set of states and L the state-labelling (as before)

• R : S × S → R!0, a rate matrix
– R(s, s′) = λ means that the average speed of going from s to s′ is 1

λ

• E(s) =
∑

s′∈S R(s, s′) = R(s, S) is the exit rate of state s

– s is called absorbing whenever E(s) = 0

⇒ a CTMC is a Kripke structure with probabilistically timed transitions
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Interpretation

• The probability that transition s → s′ is enabled in [0, t]:

1 − e−R(s,s′)·t

• The probability to move from non-absorbing s to s′ in [0, t] is:

R(s, s′)
E(s)

·
(
1 − e−E(s)·t

)

• The probability to take an outgoing transition from s within [0, t] is:

1 − e−E(s)·t
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Advanced model checking

Embedded DTMC

The embedded DTMC of the CTMC (S,R) is (S,P) where

P(s, s′) =

{
R(s,s′)
E(s) if E(s) > 0

0 otherwise
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Advanced model checking

Elementary probabilities for CTMCs

• Transient probability vector π(t) = (· · · ,πi(t), · · ·) for t ! 0

– where πi(t) is the probability to be in state si after t time units (given π(0))
– π(t) is computed by solving a linear differential equations

π′(t) = π(t) · Q given π(0) where Q = R− diag(E)

• Steady-state probability vector π = (· · · , πi, · · ·)
– πi is mostly independent from the starting distribution
– π is computed from a system of linear equations:

π · Q = 0 where
P

i πi = 1
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Continuous Stochastic Logic

State-formulas Φ ::= a | ¬Φ | Φ ∨ Φ | S✂p(Φ) | P✂p(ϕ)
with probability p and comparison operator ✂

S✂p(Φ) probability that Φ holds in steady state is ✂ p

P✂p(ϕ) probability that paths fulfill ϕ is ✂ p

Path-formulas ϕ ::= ⃝I Φ | Φ UI Φ with interval I

⃝I Φ next state is reached at time t ∈ I and fulfills Φ

Φ UI Ψ Φ holds along the path until Ψ holds at time t ∈ I

CTL operators ⃝ and U are special cases
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Example properties

• In ! 92% of the cases, a goal state is legally reached within 3.1 sec:

P! 0.92

(
¬ illegal U" 3.1 goal

)

• . . . a state is soon reached guaranteeing 0.9999 long-run availability:

P! 0.92

(
¬ illegal U"0.7 S!0.9999 (goal)

)

• On the long run, illegal states can (almost surely) not be reached in
the next 7.2 time units:

S!0.9999

(
P! 1

(
✷"7.2¬ illegal

))
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Semantics of CSL: state-formulas

C, s |= Φ if and only if formula Φ holds in state s of CTMC C

Relation |= is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∨ Ψ iff (s |= Φ) or (s |= Ψ)

s |= S✂p(Φ) iff limt→∞ Pr{σ ∈ Paths(s) | σ@t |= Φ } ✂ p

s |= P✂p(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ } ✂ p

Pr{. . .} is measurable by a (i.e., cone) Borel space construction on paths in a CTMC
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Advanced model checking

Semantics of CSL: path-formulas

A path in CTMC C is an infinite alternating sequence

s0 t0 s1 t1 . . . with R(si, si+1) > 0 and ti > 0

non time-divergent paths have probability zero

Semantics of path-formulas is defined by:

σ |= ⃝IΦ iff σ[1] |= Φ and t0 ∈ I

σ |= Φ UI Ψ iff ∃t ∈ I. ((∀t′ ∈ [0, t).σ@t′ |= Φ) ∧ σ@t |= Ψ)

where σ@t denotes the state in the path σ at time t
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Model-checking CSL

• Check which states in a CTMC satisfy a CSL formula:

– compute recursively the set Sat(Φ) of states that satisfy Φ
⇒ recursive descent computation over the parse tree of Φ

• For the non-stochastic part: as for CTL

• For all probabilistic formulae not involving a time bound: as for PCTL
– using the embedded DTMC

• How to compute Sat(Φ) for the stochastic timed operators?
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Model-checking the steady-state operator
• For an ergodic (i.e., strongly-connected) CTMC:

s ∈ Sat(S✂p(Φ)) iff
∑

s′∈Sat(Φ)

πs′ ✂ p

=⇒ this boils down to a standard steady-state analysis

• For an arbitrary CTMC:
– determine the bottom strongly-connected components (BSCCs)
– for BSCC B determine the steady-state probability of a Φ-state
– compute the probability to reach BSCC B from state s

– check whether
X

B

0

B@Pr{ reach B from s } ·
X

s′∈B∩Sat(Φ)

πB
s′

1

CA ✂ p
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Verifying steady-state properties: an example

1

1

6
3 1 2

3

1

determine the bottom strongly-connected components

c⃝ JPK 14



Advanced model checking

Verifying steady-state properties: an example
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s |= S>0.75(magenta) iff Prob(s, ✸atyellow)·πyellow(magenta)
+Prob(s, ✸atblue)·πblue(magenta) > 0.75
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Checking time-bounded reachability

• s |= P✂p(Φ U"t Ψ) if and only if Prob(s,Φ U"t Ψ) ✂ p

• Prob(s,Φ U"tΨ) is the least solution of: (Baier, Katoen & Hermanns, 1999)

– 1 if s |= Ψ

– if s |= Φ ∧ ¬Ψ:
∫ t

0

∑

s′∈S

P(s, s′) · E(s) · e−E(s)·x
︸ ︷︷ ︸

probability to move to
state s′ at time x

· Prob(s′,Φ U"t−x Ψ)︸ ︷︷ ︸
probability to fulfill Φ UΨ
before time t−x from s′

dx

– 0 otherwise
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Reduction to transient analysis

(Baier, Haverkort, Hermanns & Katoen, 2000)

• Make all Ψ- and all ¬ (Φ ∨ Ψ)-states absorbing in C

• Check ✸=t Ψ in the obtained CTMC C′

• This is a standard transient analysis in C′:
X

s′|=Ψ

Pr{σ ∈ Paths(s) | σ@t = s′}

– compute by solving linear differential equations, or discretization

⇒ Discretization + matrix-vector multiplication + Poisson probabilities
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Markov reward model checker (MRMC)
(Zapreev & Meyer-Kayser, 2000/2005)

• Supports DTMCs, CTMCs and cost-based extensions thereof
– temporal logics: P(R)CTL and CS(R)L
– bounded until, long run properties, and interval bounded until

• Sparse-matrix representation

• Command-line tool (in C)
– experimental platform for new (e.g., reward) techniques
– back-end of GreatSPN, PEPA WB, PRISM and stochastic GG tool
– freely downloadable under Gnu GPL license

• Experiments: Pentium 4, 2.66 GHz, 1 GB RAM
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Verification times
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