Overview

Introduction
Modelling parallel systems
Linear Time Properties
Regular Properties
Linear Temporal Logic (LTL)
Computation-Tree Logic
Equivalences and Abstraction
bisimulation
CTL, CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps
simulation relations

Recall: CTL*

CTL* state formulas

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \exists \varphi
$$

CTL* path formulas
$\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathrm{U} \varphi_{2}$

Recall: CTL*

CTL* state formulas

$$
\Phi::=\text { true } \mid \text { a }\left|\Phi_{1} \wedge \Phi_{2}\right| \neg \Phi \mid \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathrm{U} \varphi_{2}
$$

derived operators:

- $\diamond, \square, \ldots$ as in LTL

Recall: CTL*

CTL* state formulas

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

derived operators:

- $\diamond, \square, \ldots$ as in LTL
- universal quantification: $\forall \varphi \stackrel{\text { def }}{=} \neg \exists \neg \varphi$

Recall: CTL* and CTL

CTL* state formulas

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

CTL: sublogic of CTL*

Recall: CTL* and CTL

CTL* state formulas

$$
\Phi::=\text { true } \mid \text { a }\left|\Phi_{1} \wedge \Phi_{2}\right| \neg \Phi \mid \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

CTL: sublogic of CTL*

- with path quantifiers \exists and \forall

Recall: CTL* and CTL

CTL* state formulas

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \cup \varphi_{2}
$$

CTL: sublogic of CTL*

- with path quantifiers \exists and \forall
- restricted syntax of path formulas:

Recall: CTL* and CTL

CTL* state formulas

$$
\Phi::=\text { true }|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \exists \varphi
$$

CTL* path formulas

$$
\varphi::=\Phi\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi|\bigcirc \varphi| \varphi_{1} \mathrm{U} \varphi_{2}
$$

CTL: sublogic of CTL*

- with path quantifiers \exists and \forall
- restricted syntax of path formulas:
* no boolean combinations of path formulas
* arguments of temporal operators \bigcirc and \mathbf{U} are state formulas

CTL equivalence

CTL equivalence

Let $\boldsymbol{s}_{1}, \boldsymbol{s}_{\mathbf{2}}$ be states of a TS \mathcal{T} without terminal states

CTL equivalence

Let $\boldsymbol{s}_{1}, s_{2}$ be states of a TS \mathcal{T} without terminal states
s_{1}, s_{2} are CTL equivalent if for all CTL formulas Φ :

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

CTL equivalence

Let $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ be states of a TS \mathcal{T} without terminal states
$\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are CTL equivalent if for all CTL formulas $\boldsymbol{\Phi}$:

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

CTL equivalence

Let $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ be states of a TS $\boldsymbol{\mathcal { T }}$ without terminal states
$\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent if for all CTL formulas $\boldsymbol{\Phi}$:

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

s_{1}, s_{2} are not CTL equivalent $s_{1} \vDash \exists \bigcirc(\exists \bigcirc a \wedge \exists \bigcirc b)$ $s_{2} \not \vDash \exists \bigcirc(\exists \bigcirc a \wedge \exists \bigcirc b)$

CTL, CTL* and LTL equivalence

Let $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ be states of a TS $\boldsymbol{\mathcal { T }}$ without terminal states
$\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent if for all CTL formulas $\boldsymbol{\Phi}$:

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

analogous definition for CTL* and LTL

CTL, CTL* and LTL equivalence

Let $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ be states of a TS $\boldsymbol{\mathcal { T }}$ without terminal states
s_{1}, s_{2} are CTL equivalent if for all CTL formulas $\boldsymbol{\Phi}$:

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

s_{1}, s_{2} are CTL* equivalent if for all CTL* formulas Φ :

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

s_{1}, s_{2} are LTL equivalent if for all LTL formulas φ :

$$
s_{1} \models \varphi \quad \text { iff } \quad s_{2} \models \varphi
$$

CTL/CTL* and bisimulation

CTL/CTL* and bisimulation

bisimulation equivalence

$=$ CTL equivalence
$=$ CTL* equivalence

CTL/CTL* and bisimulation

bisimulation equivalence

$=$ CTL equivalence
$=$ CTL* equivalence
\longleftarrow for finite TS

CTL/CTL* and bisimulation

bisimulation equivalence
 $=C T L$ equivalence
 $=$ CTL* equivalence

Let \mathcal{T} be a finite TS without terminal states, and $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ states in $\boldsymbol{\mathcal { T }}$. Then:
$\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$
iff $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ are CTL equivalent
iff \boldsymbol{s}_{1} and \boldsymbol{s}_{2} are CTL* equivalent

CTL/CTL* and bisimulation

CTL/CTL* and bisimulation

CTL is a sublogic of CTL*

CTL/CTL* and bisimulation

for TS that are finitely branching

CTL is a sublogic of CTL*

CTL/CTL* and bisimulation

for TS that are finitely branching

CTL is a sublogic of CTL*

Bisimulation equivalence \Rightarrow CTL* equivalence

For arbitrary (possibly infinite) transition systems without terminal states:

Bisimulation equivalence $\Rightarrow C T L^{*}$ equivalence

For arbitrary (possibly infinite) transition systems without terminal states:

If s_{1}, s_{2} are states with $\boldsymbol{s}_{1} \sim_{\mathcal{T}} s_{2}$ then for all CTL* formulas Φ :

$$
s_{1} \models \Phi \quad \text { iff } \quad s_{2} \models \Phi
$$

Bisimulation equivalence \Rightarrow CTL* equivalence

show by structural induction on CTL* formulas:
(a) if $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are states with $\boldsymbol{s}_{\mathbf{1}} \sim_{\mathcal{T}} \boldsymbol{s}_{\mathbf{2}}$ then for all CTL* state formulas Φ :

$$
s_{1} \models \Phi \text { iff } s_{2} \models \Phi
$$

(b) if π_{1}, π_{2} are paths with $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then for all CTL* path formulas φ :

$$
\pi_{1} \models \varphi \text { iff } \pi_{2} \models \varphi
$$

Bisimulation equivalence \Rightarrow CTL* equivalence

show by structural induction on CTL* formulas:
(a) if $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are states with $\boldsymbol{s}_{\mathbf{1}} \sim_{\boldsymbol{T}} \boldsymbol{s}_{\mathbf{2}}$ then for all CTL* state formulas Φ :

$$
s_{1} \models \Phi \text { iff } s_{2} \models \Phi
$$

(b) if π_{1}, π_{2} are paths with $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then for all CTL* path formulas φ :

$$
\pi_{1} \models \varphi \text { iff } \pi_{2} \models \varphi
$$

$\pi_{1} \sim_{\mathcal{T}} \pi_{2} \xrightarrow{\text { def }} \pi_{1}$ and π_{2} are statewise bisimulation equivalent

Bisimulation equivalence \Rightarrow CTL* equivalence

statewise bisimulation equivalent paths:

Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ :
(a) if $s_{1} \sim_{\mathcal{T}} s_{2}$ then: $\boldsymbol{s}_{1} \models \Phi$ iff $s_{2} \models \Phi$
(b) if $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then: $\pi_{1} \models \varphi$ iff $\pi_{2} \models \varphi$

Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ :
(a) if $\boldsymbol{s}_{1} \sim_{\mathcal{T}} s_{2}$ then: $\boldsymbol{s}_{1} \models \Phi$ iff $\boldsymbol{s}_{2} \models \Phi$
(b) if $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then: $\pi_{1} \models \varphi$ iff $\pi_{2} \models \varphi$

Proof by structural induction

Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ :
(a) if $\boldsymbol{s}_{\mathbf{1}} \sim_{\mathcal{T}} \boldsymbol{s}_{\mathbf{2}}$ then: $\boldsymbol{s}_{\mathbf{1}} \models \boldsymbol{\models}$ iff $\boldsymbol{s}_{\mathbf{2}} \models \Phi$
(b) if $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then: $\pi_{1} \models \varphi$ iff $\pi_{2} \models \varphi$

Proof by structural induction
base of induction:
(a) $\Phi=$ true or $\Phi=a \in A P$
(b) $\boldsymbol{\varphi}=\boldsymbol{\Phi}$ for some state formula $\boldsymbol{\Phi}$
s.t. statement (a) holds for Φ

Bisimulation equivalence \Rightarrow CTL* equivalence

For all CTL* state formulas Φ and path formulas φ :
(a) if $\boldsymbol{s}_{\boldsymbol{1}} \sim_{\mathcal{T}} \boldsymbol{s}_{\boldsymbol{2}}$ then: $\boldsymbol{s}_{\mathbf{1}} \models \Phi$ iff $\boldsymbol{s}_{\mathbf{2}} \models \Phi$
(b) if $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$ then: $\pi_{1} \models \varphi$ iff $\pi_{2} \models \varphi$

Proof by structural induction
step of induction:
(a) consider $\Phi=\Phi_{1} \wedge \Phi_{2}, \neg \Psi$ or $\exists \varphi$ s.t.
(a) holds for Φ_{1}, Φ_{2}, Ψ
(b) holds for φ
(b) consider $\varphi=\varphi_{1} \wedge \varphi_{2}, \neg \varphi^{\prime}, \bigcirc \varphi^{\prime}, \varphi_{1} \mathbf{U} \varphi_{2}$ s.t.
(b) holds for $\varphi_{1}, \varphi_{2}, \varphi^{\prime}$

Path lifting for $\sim_{\mathcal{T}}$

Path lifting for $\sim_{\mathcal{T}}$

If $s_{1} \sim_{\mathcal{T}} s_{2}$ then for all $\pi_{1} \in \operatorname{Paths}\left(s_{1}\right)$ there exists $\pi_{2} \in \operatorname{Paths}\left(s_{2}\right)$ with $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$

Path lifting for $\sim_{\mathcal{T}}$

If $s_{1} \sim_{\tau} s_{2}$ then for all $\pi_{1} \in \operatorname{Paths}\left(s_{1}\right)$ there exists $\pi_{2} \in \operatorname{Paths}\left(s_{2}\right)$ with $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$

Path lifting for $\sim_{\mathcal{T}}$

If $s_{1} \sim_{\tau} s_{2}$ then for all $\pi_{1} \in \operatorname{Paths}\left(s_{1}\right)$ there exists $\pi_{2} \in \operatorname{Paths}\left(s_{2}\right)$ with $\pi_{1} \sim_{\mathcal{T}} \pi_{2}$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ not CTL equivalent then there exists a CTL formula Φ with

$$
\begin{aligned}
& \quad s_{1} \models \Phi \wedge s_{2} \not \models \Phi \\
& \text { or } \quad s_{1} \not \models \Phi \wedge s_{2} \models \Phi
\end{aligned}
$$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ not CTL equivalent then there exists a CTL formula Φ with

$$
\begin{aligned}
& s_{1} \models \Phi \wedge s_{2} \not \models \Phi \\
\text { or } & s_{1} \not \models \Phi \wedge s_{2} \models \Phi \quad \Longrightarrow \quad s_{1} \models \neg \Phi \wedge s_{2} \not \models \neg \Phi
\end{aligned}
$$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are not $\mathbf{L T L}$ equivalent then there exists a
LTL formula φ with $s_{1} \models \varphi$ and $s_{2} \not \models \varphi$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are not $\mathbf{L T L}$ equivalent then there exists a
LTL formula φ with $s_{1} \models \varphi$ and $s_{2} \not \models \varphi$
wrong.

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{1}, \boldsymbol{s}_{\mathbf{2}}$ are not LTL equivalent then there exists a
LTL formula φ with $s_{1} \models \varphi$ and $s_{2} \not \models \varphi$
wrong.

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\boldsymbol{2}}$ are not LTL equivalent then there exists a
LTL formula φ with $s_{1} \models \varphi$ and $s_{2} \not \models \varphi$
wrong.
$\operatorname{Traces}\left(s_{2}\right) \subset \operatorname{Traces}\left(s_{1}\right)$

Correct or wrong?

If s_{1}, s_{2} are not CTL equivalent then there exists a
CTL formula Φ with $s_{1} \models \Phi$ and $s_{2} \not \models \Phi$

correct.

If $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are not $\mathbf{L T L}$ equivalent then there exists a
LTL formula φ with $s_{1} \models \varphi$ and $s_{2} \not \models \varphi$
wrong.
$\operatorname{Traces}\left(s_{2}\right) \subset \operatorname{Traces}\left(s_{1}\right)$
hence: $s_{1} \models \varphi$ implies $s_{2} \models \varphi$

CTL equivalence \Longrightarrow bisimulation equivalence

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, s_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if s_{1}, s_{2} are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, s_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

Proof: show that
$\mathcal{R} \stackrel{\text { def }}{=}\left\{\left(s_{1}, s_{2}\right): s_{1}, s_{2}\right.$ satisfy the same CTL formulas $\}$
is a bisimulation

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

Proof: show that
$\mathcal{R} \stackrel{\text { def }}{=}\left\{\left(s_{1}, s_{2}\right): s_{1}, s_{2}\right.$ satisfy the same CTL formulas $\}$ is a bisimulation, i.e., for all $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
(1) $L\left(s_{1}\right)=L\left(s_{2}\right)$
(2) if $\boldsymbol{s}_{1} \rightarrow \boldsymbol{t}_{1}$ then there exists a transition $\boldsymbol{s}_{2} \rightarrow \boldsymbol{t}_{2}$ s.t. $\left(t_{1}, t_{2}\right) \in \mathcal{R}$

Example: CTL master formulas

Example: CTL master formulas

$$
\begin{aligned}
& \widehat{=}\{a\} \\
& \widehat{=}\{b\} \\
O & \widehat{=\varnothing}
\end{aligned}
$$

$$
\begin{aligned}
& \text { bisimulation equivalence } \sim_{\mathcal{T}} \\
& =\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}
\end{aligned}
$$

Example: CTL master formulas

> bisimulation equivalence $\sim_{\mathcal{T}}$
> $=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$
but $u_{1} \not \chi_{\tau} u_{2}$

$$
\begin{aligned}
O & \widehat{=}\{a\} \\
& \widehat{=}\{b\} \\
\bigcirc & \widehat{O} \varnothing
\end{aligned}
$$

Example: CTL master formulas

> bisimulation equivalence $\sim_{\mathcal{T}}$
> $=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$
but $u_{1} \not \chi_{\tau} u_{2}$

$$
\text { as } \begin{aligned}
& u_{1} \rightarrow\left\{w_{1}, w_{2}\right\} \\
& u_{2} \nrightarrow\left\{w_{1}, w_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{=}\{a\} \\
& \widehat{=}\{b\} \\
& \widehat{=} \varnothing
\end{aligned}
$$

Example: CTL master formulas

bisimulation equivalence $\sim_{\mathcal{T}}$
$=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$

CTL master formulas:

$$
\begin{aligned}
w_{1}, w_{2} & \models ? \\
v_{1}, v_{2} & \models ? \\
u_{1} & \models ? \\
u_{2} & \models ?
\end{aligned}
$$

Example: CTL master formulas

bisimulation equivalence $\sim_{\mathcal{T}}$
$=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$

CTL master formulas:

$$
\begin{aligned}
w_{1}, w_{2} & \models b \\
v_{1}, v_{2} & \models ? \\
u_{1} & \models ? \\
u_{2} & \models ?
\end{aligned}
$$

Example: CTL master formulas

bisimulation equivalence $\sim_{\mathcal{T}}$
$=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$

CTL master formulas:

$$
\begin{aligned}
w_{1}, w_{2} & \models b \\
v_{1}, v_{2} & \models \neg a \wedge \neg b \\
u_{1} & \models ? \\
u_{2} & \models ?
\end{aligned}
$$

Example: CTL master formulas

> bisimulation equivalence $\sim_{\mathcal{T}}$
> $=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$

CTL master formulas:

$$
\begin{aligned}
w_{1}, w_{2} & \models b \\
v_{1}, v_{2} & \models \neg a \wedge \neg b \\
u_{1} & \models(\exists \bigcirc b) \wedge a \\
u_{2} & \models ?
\end{aligned}
$$

Example: CTL master formulas

> bisimulation equivalence $\sim \mathcal{T}$
> $=\left\{\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right), \ldots\right\}$

CTL master formulas:

$$
\begin{aligned}
w_{1}, w_{2} & \vDash b \\
v_{1}, v_{2} & \vDash \neg a \wedge \neg b \\
u_{1} & \vDash(\exists \bigcirc b) \wedge a \\
u_{2} & \vDash(\neg \exists \bigcirc b) \wedge a
\end{aligned}
$$

$$
A P=\{\text { blue }, \text { red }\}
$$

$A P=\{$ blue, red $\}$
$s_{1} \sim_{\mathcal{T}} s_{2} \not \chi_{\mathcal{T}} u$

...master formulas for $\sim_{\mathcal{T}}$-classes?

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, s_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

- wrong for infinite TS

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

- wrong for infinite TS
- but also holds for finitely branching TS

CTL equivalence \Longrightarrow bisimulation equivalence

If $\boldsymbol{\mathcal { T }}$ is a finite TS then, for all states $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ in $\boldsymbol{\mathcal { T }}$:
if $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

- wrong for infinite TS
- but also holds for finitely branching TS \uparrow
possibly infinite-state TS such that
* the number of initial states is finite
* for each state the number of successors is finite

CTL equivalence \Longrightarrow bisimulation equivalence

Let $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ be finitely branching.

CTL equivalence \Longrightarrow bisimulation equivalence

Let $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ be finitely branching.

* S_{0} is finite * Post(s) is finite for all $s \in S$

CTL equivalence \Longrightarrow bisimulation equivalence

Let $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ be finitely branching.

* S_{0} is finite * Post(s) is finite for all $s \in S$

Then, for all states $\boldsymbol{s}_{1}, s_{2}$ in \boldsymbol{T} :
if s_{1}, s_{2} are CTL equivalent then $s_{1} \sim_{\mathcal{T}} s_{2}$

CTL equivalence \Longrightarrow bisimulation equivalence

Let $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ be finitely branching.

* S_{0} is finite * $\operatorname{Post}(s)$ is finite for all $s \in S$

Then, for all states $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ in \mathcal{T} :

$$
\text { if } \boldsymbol{s}_{1}, s_{2} \text { are CTL equivalent then } \boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}
$$

Proof: as for finite TS.

CTL equivalence \Longrightarrow bisimulation equivalence

Let $\mathcal{T}=\left(S, A c t, \rightarrow, S_{0}, A P, L\right)$ be finitely branching.

* S_{0} is finite * Post(s) is finite for all $s \in S$

Then, for all states $\boldsymbol{s}_{1}, s_{2}$ in \boldsymbol{T} :

$$
\text { if } s_{1}, s_{2} \text { are CTL equivalent then } s_{1} \sim_{\mathcal{T}} s_{2}
$$

Proof: as for finite TS. Amounts showing that $\mathcal{R} \stackrel{\text { def }}{=}\left\{\left(s_{1}, s_{2}\right): s_{1}, s_{2}\right.$ satisfy the same CTL formulas $\}$ is a bisimulation.

CTL equivalence \Longrightarrow bisimulation equivalence

If \mathcal{T} is a finitely branching TS then for all states $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$: if $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are CTL equivalent then $\boldsymbol{s}_{1} \sim_{\mathcal{T}} \boldsymbol{s}_{2}$

Proof: show that
$\mathcal{R} \stackrel{\text { def }}{=}\left\{\left(s_{1}, s_{2}\right): s_{1}, s_{2}\right.$ satisfy the same CTL formulas $\}$
is a bisimulation, i.e., for $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:
(1) $L\left(s_{1}\right)=L\left(s_{2}\right)$
(2) if $s_{1} \rightarrow t_{1}$ then there exists a transition $\boldsymbol{s}_{2} \rightarrow t_{2}$ s.t. $\left(t_{1}, t_{2}\right) \in \mathcal{R}$

Summary: CTL/CTL* and bisimulation

Summary: CTL/CTL* and bisimulation стrıog. 2.2.som

Let \mathcal{T} be a finite TS without terminal states, and $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ states in \mathcal{T}. Then:

$S_{1} \sim_{\mathcal{T}} S_{2}$

iff \boldsymbol{s}_{1} and $\boldsymbol{s}_{\mathbf{2}}$ are CTL equivalent
iff $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ are CTL* equivalent

Summary: CTL/CTL* and bisimulation стrвеа. 2.2.s.sм

Let \mathcal{T} be a finitely branching TS without terminal states, and $\boldsymbol{s}_{1}, s_{2}$ states in \mathcal{T}. Then:

$S_{1} \sim_{\mathcal{T}} S_{2}$

iff $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ are CTL equivalent
iff $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ are CTL* equivalent

Summary: CTL/CTL* and bisimulation стиваб. 2-2-вио

Summary: CTL/CTL* and bisimulation стиеа. $2 \cdot-$-вир

CTL is a sublogic of CTL*

Summary: CTL/CTL* and bisimulation стиеа. $2 \cdot-$-вир

CTL is a sublogic of CTL*

Summary: CTL/CTL* and bisimulation стиеа. $2 \cdot-$-вир

CTL is a sublogic of CTL*

Summary: CTL/CTL* and bisimulation стиеа. $2 \cdot-$-вир

CTL is a sublogic of CTL*

CTL/CTL* and bisimulation for TS

CTL/CTL* and bisimulation for TS

so far: we considered

- CTL/CTL* equivalence
- bisimulation equivalence $\sim_{\mathcal{T}}$
for the states of a single transition system \mathcal{T}

CTL/CTL* and bisimulation for TS

If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are finitely branching TS over $\boldsymbol{A P}$ without terminal states then:

$\mathcal{T}_{1} \sim \mathcal{T}_{2}$

iff \mathcal{T}_{1} and \mathcal{T}_{2} satisfy the same CTL formulas
iff \mathcal{T}_{1} and \mathcal{T}_{2} satisfy the same CTL* formulas

Correct or wrong?

Does the following statements hold for finite TS
without terminal states?

Correct or wrong?

CTL equivalence is finer than LTL equivalence

Correct or wrong?

CTL equivalence is finer than LTL equivalence
correct.

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

\uparrow
CTL equivalence $=$ CTL* equivalence LTL is sublogic of CTL*

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence
wrong.

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

wrong.

$$
\begin{aligned}
O & \hat{=}\{a\} \\
O & \hat{=}\{b\} \\
O & \hat{=}\{c\} \\
O & =\varnothing
\end{aligned}
$$

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

wrong.

$\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are trace equivalent

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

wrong.

$\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ are trace equivalent and LTL equivalent

Correct or wrong?

CTL equivalence is finer than LTL equivalence

correct.

LTL equivalence is finer than CTL equivalence

wrong.

$\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ are trace equivalent and LTL equivalent

$$
\begin{aligned}
& s_{1} \models \exists \bigcirc(\exists \bigcirc a \wedge \exists \bigcirc b) \\
& s_{2} \not \models \exists \bigcirc(\exists \bigcirc a \wedge \exists \bigcirc b)
\end{aligned}
$$

Summary: equivalences

Summary: equivalences

Summary: equivalences

Summary: equivalences

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ satisfy the same $C T L_{\backslash \cup}$ formulas then
 $S_{1} \sim_{T} S_{2}$.

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If s_{1}, s_{2} satisfy the same $\mathrm{CT}_{\backslash \cup}$ formulas then

$$
S_{1} \sim_{\mathcal{T}} S_{2}
$$

where $\mathrm{CTL}_{\backslash \cup} \widehat{=} C T L$ without until operator U

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If s_{1}, s_{2} satisfy the same $C T L_{\backslash \cup}$ formulas then

$$
S_{1} \sim_{\mathcal{T}} S_{2}
$$

where $\mathrm{CTL}_{\backslash \cup} \widehat{=} C T L$ without until operator U

correct.

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If s_{1}, s_{2} satisfy the same $C T L_{\backslash \cup}$ formulas then

$$
S_{1} \sim_{\mathcal{T}} S_{2}
$$

where $\mathrm{CTL}_{\backslash \cup} \widehat{=} C T L$ without until operator U
correct. see the proof
"CTL equivalence \Longrightarrow bisimulation equivalence"

CTL ${ }_{\backslash U \text {-equivalence }} \Rightarrow$ bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If s_{1}, s_{2} satisfy the same $C T L_{\backslash U}$ formulas then $S_{1} \sim_{T} S_{2}$.

Proof. Show that $\mathrm{CT}_{\backslash \cup}$ equivalence is a bisimulation

CTL ${ }_{\backslash u \text {-equivalence }} \Rightarrow$ bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \mathcal{T}.

If s_{1}, s_{2} satisfy the same $\mathrm{CTL}_{\backslash \cup}$ formulas then $S_{1} \sim_{T} S_{2}$.

Proof. Show that $\mathrm{CT}_{\backslash \cup}$ equivalence is a bisimulation

- labeling condition only uses atomic propositions

CTL ${ }_{\backslash u \text {-equivalence }} \Rightarrow$ bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ states of $\boldsymbol{\mathcal { T }}$.

If s_{1}, s_{2} satisfy the same $\mathrm{CT}_{\backslash \cup}$ formulas then $s_{1} \sim_{\tau} s_{2}$.

Proof. Show that $\mathrm{CT}_{\backslash \cup}$ equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by $C T L_{\backslash U}$ master formulas of the form:

CTS $_{\backslash}$-equivalence \Rightarrow bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and s_{1}, s_{2} states of \boldsymbol{T}.

If s_{1}, s_{2} satisfy the same $\mathrm{CT}_{\backslash \cup}$ formulas then $S_{1} \sim_{\mathcal{T}} S_{2}$.

Proof. Show that $\mathrm{CT}_{\backslash \cup}$ equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by
$C T L_{\backslash U}$ master formulas of the form:

$$
\exists \bigcirc \Phi_{C} \text { where } \Phi_{C}=\bigwedge_{D} \Phi_{C, D}
$$

CTL $_{\backslash}$-equivalence \Rightarrow bisimulation equivalence

Let \mathcal{T} be a finite TS without terminal states and $\boldsymbol{s}_{\mathbf{1}}, \boldsymbol{s}_{\mathbf{2}}$ states of $\boldsymbol{\mathcal { T }}$.

If s_{1}, s_{2} satisfy the same $\mathrm{CTL}_{\backslash \cup}$ formulas then

$$
s_{1} \sim_{\mathcal{T}} s_{2}
$$

Proof. Show that $\mathrm{CT}_{\backslash \cup}$ equivalence is a bisimulation

- labeling condition only uses atomic propositions
- simulation condition can be established by
$C T L_{\backslash U}$ master formulas of the form:

$$
\begin{aligned}
& \exists \bigcirc \Phi_{C} \text { where } \Phi_{C}=\bigwedge_{D} \Phi_{C, D} \\
& \text { and } \operatorname{Sat}\left(\Phi_{C, D}\right) \subseteq C \backslash D
\end{aligned}
$$

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states.
\mathcal{T} and its bisimulation quotient \mathcal{T} / \sim satisfy the same CTL* formulas.

Correct or wrong?

Let \boldsymbol{T} be a finite TS without terminal states.
\mathcal{T} and its bisimulation quotient \mathcal{T} / \sim satisfy the same CTL* formulas.
correct.

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states.
\mathcal{T} and its bisimulation quotient \mathcal{T} / \sim satisfy the same CTL* formulas.
correct. Recall that $\mathcal{T} \sim \mathcal{T} / \sim$

Correct or wrong?

Let \mathcal{T} be a finite TS without terminal states.
\mathcal{T} and its bisimulation quotient \mathcal{T} / \sim satisfy the same CTL* formulas.
correct. Recall that $\mathcal{T} \sim \mathcal{T} / \sim$ as

$$
\mathcal{R}=\{(s,[s]): s \in S\}
$$

is a bisimulation for $(\mathcal{T}, \mathcal{T} / \sim)$
here: $[\boldsymbol{s}]=\boldsymbol{\sim}_{\mathcal{T}}$-equivalence class of state \boldsymbol{s}

