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1 Strong Bisimulation and HML

Exercise 1.1 Consider the following LTS:

1. Tell whether or not s1 is strongly bisimilar to t1. Justify your answer formally.

2. Determine all the states of the LTS that satisfy the following formulas:

• [a]〈b〉tt ∧ [a]〈c〉tt
• 〈a〉〈b〉tt ∨ 〈c〉〈b〉[c]ff
• [a][b]〈c〉tt

Exercise 1.2 Consider the following labelled transition system.

s s1b
oo

b

�� b // s2

a

��

Compute for which sets of states [[X]] ⊆ {s, s1, s2} the following formulae are true.

• X = 〈a〉tt ∨ [b]X

• X = 〈a〉tt ∨ ([b]X ∧ 〈b〉tt)

Exercise 1.3 Consider the following LTS:
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1. Tell whether or not s1 is strongly bisimilar to t1. Justify your answer formally.

2. Determine all the states of the LTS that satisfy the following formulas:

• [a]〈b〉tt
• 〈a〉(〈b〉tt ∨ 〈c〉tt)
• 〈b〉[b][c]ff

Exercise 1.4 Consider the following LTS:

1. Tell whether or not s1 is strongly bisimilar to u1. Justify your answer formally.

2. Determine all the states of the LTS that satisfy the following formulas:

• ϕ1 = [a]〈b〉〈c〉tt
• ϕ2 = 〈a〉〈b〉〈c〉tt
• ϕ3 = [a]〈b〉[c]ff
• ϕ4 = 〈a〉〈b〉[c]ff

Exercise 1.5 Consider the following labelled transition system.

s

a

��

a

��
s1

a

��

b

��

s2

a

��
s3

a

AA

s4

a

ii t

a

��

a // t3
a // t4

a

{{

t1

b





a

��
t2

a

CC

Show that s ∼ t by finding a strong bisimulation R containing the pair (s, t).
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Exercise 1.6 Consider the CCS processes P and Q defined by:

P
def
= a.P1

P1
def
= b.P + c.P

and

Q
def
= a.Q1

Q1
def
= b.Q2 + c.Q

Q2
def
= a.Q3

Q3
def
= b.Q+ c.Q2 .

Show that P ∼ Q holds by finding an appropriate strong bisimulation.

Exercise 1.7 Consider the following labelled transition system.

s

a

��
s1

b

��
s2

b

WW

a

[[ t

a

��
t1

b

��

b 77

t2

a

[[ u

a

��
u1

b

��

u2 bhh

a

\\

u3

a

CC

b

BB

v

a

��
v1

b

��

b // v2

a

[[

v3

b

CC

b

WW

Decide whether s
?∼ t, s

?∼ u, and s
?∼ v. Support your claims by giving a universal winning strategy

either for the attacker (in the negative case) or the defender (in the positive case). In the positive case
you can also define a strong bisimulation relating the pair in question.

Exercise 1.8 Prove that for any CCS processes P and Q the following laws hold:

• P |Nil ∼ P

• P + Nil ∼ P

Exercise 1.9 Argue that any two strongly bisimilar processes have the same sets of traces, i.e., that

s ∼ t implies Traces(s) = Traces(t).

Hint: you can find useful the game characterization of strong bisimilarity.
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Exercise 1.10 Is it true that any relation R that is a strong bisimulation must be reflexive, transitive and
symmetric? If yes then prove it, if not then give counter examples, i.e.

• define an LTS and a binary relation on states which is not reflexive but it is a strong bisimulation

• define an LTS and a binary relation on states which is not symmetric but it is a strong bisimulation

• define an LTS and a binary relation on states which is not transitive but it is a strong bisimulation.

Exercise 1.11 Find (one) labelled transition system with an initial state s such that it satisfies (at the
same time) the following properties:

• s |= 〈a〉(〈b〉〈c〉tt ∧ 〈c〉tt)

• s |= 〈a〉〈b〉([a]ff ∧ [b]ff ∧ [c]ff)

• s |= [a]〈b〉([c]ff ∧ 〈a〉tt)

Exercise 1.12 Assume an arbitrary CCS defining equation K
def
= P where K is a process constant and

P is a CCS expression. Prove that K ∼ P . (Hint: by using SOS rules for CCS, examine the possible
transitions from K and P .)

Exercise 1.13 Decide whether the following claims are true or false. Support your claims either by using
bisimulation games or directly the definition of strong/weak bisimilarity.

• a.τ.Nil ?∼ τ.a.Nil

• τ.a.A+ b.B
?∼ τ.(a.A+ b.B)

• τ.Nil + (a.Nil | a.Nil) r {a, b} ?∼ τ.Nil

• a.(τ.Nil + b.B)
?∼ a.Nil + a.b.B

The same processes but weak bisimilarity instead of the strong one.

• a.τ.Nil
?
≈ τ.a.Nil

• τ.a.A+ b.B
?
≈ τ.(a.A+ b.B)

• τ.Nil + (a.Nil | a.Nil) r {a, b}
?
≈ τ.Nil

• a.(τ.Nil + b.B)
?
≈ a.Nil + a.b.B

Hint: draw first the LTS generated by the CCS processes.
Home exercise: try to verify your claims by using the tool CWB.
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Exercise 1.14 Prove that for any CCS process P the following law (called idempotency) holds.

• P + P ∼ P

By using the fact that ∼⊆≈ conclude that also P + P ≈ P .

Exercise 1.15 Consider the tiny communication protocol from Lecture 4.

• Draw the labelled transition system generated by the processes Spec and Impl .

• Prove (by hand) that Spec ≈ Impl . Hint: define a weak bisimulation relation containing (Spec, Impl).

Exercise 1.16 Consider the following LTSs:

Consider also the following HML formulas:

φ
def
= [a](< b > tt ∧ < c > tt)

ψ
def
= [a](< b > tt ∨ < c > tt)

ϕ
def
=< a > [b]ff

1. Calculate [|φ|], [|ψ|] and [|ϕ|] in the LTSs (1), (2), (3) and (4).

2. Determine if p1 |= φ, p1 |= ψ, p1 |= ϕ, q4 |= φ, q4 |= ψ, q4 |= ϕ.

6



Exercise 1.17 Consider the following labelled transition system.

s

a

��

a

��
s1

a

��

b

��

s2

a

��
s3

a

AA

s4

a

ii

1. Decide whether the state s satisfies the following formulae of Hennessy-Milner logic:

• s
?

|= 〈a〉tt

• s
?

|= 〈b〉tt

• s
?

|= [a]ff

• s
?

|= [b]ff

• s
?

|= [a]〈b〉tt

• s
?

|= 〈a〉〈b〉tt

• s
?

|= [a]〈a〉[a][b]ff

• s
?

|= 〈a〉
(
〈a〉tt ∧ 〈b〉tt

)
• s

?

|= [a]
(
〈a〉tt ∨ 〈b〉tt

)
• s

?

|= 〈a〉
(
[b][a]ff ∧ 〈b〉tt

)
• s

?

|= 〈a〉
(
[a](〈a〉tt ∧ [b]ff) ∧ 〈b〉ff

)
2. Compute the following sets according to the denotational semantics for Hennessy-Milner logic.

• [[[a][b]ff ]] = ?

• [[〈a〉
(
〈a〉tt ∧ 〈b〉tt

)
]] = ?

• [[[a][a][b]ff ]] = ?

• [[[a]
(
〈a〉tt ∨ 〈b〉tt

)
]] = ?
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Exercise 1.18 Consider the following labelled transition system.

s

a

��
s1

b

��
s2

b

WW

a

[[ t

a

��
t1

b

��

b 77

t2

a

[[ v

a

��
v1

b

��

b // v2

a

[[

b
yy

v3

b

CC

It it true that s 6∼ t, s 6∼ v and t 6∼ v. Find a distinguishing formula of Hennessy-Milner logic for the pairs

• s and t

• s and v

• t and v.

Exercise 1.19 For each of the following CCS expressions decide whether they are strongly bisimilar and
if no, find a distinguishing formula in Hennessy-Milner logic.

• b.a.Nil + b.Nil and b.(a.Nil + b.Nil)

• a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil

• a.Nil | b.Nil and a.b.Nil + b.a.Nil

• (a.Nil | b.Nil) + c.a.Nil and a.Nil | (b.Nil + c.Nil)

Home exercise: verify your claims in CWB (use the strongeq and checkprop commands) and check
whether you found the shortest distinguishing formula (use the dfstrong command).

Exercise 1.20 Prove that for every Hennessy-Milner formula F and every state p ∈ Proc:

p |= F if and only if p ∈ [[F ]].

Hint: use structural induction on the structure of the formula F .
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Exercise 1.21 Consider the following labelled transition system.

s b // s1

a

��

b
qq

s3

c

OO

b

11 s2
boo

Using the game characterization for recursive Hennessy-Milner formulae decide whether the following
claims are true or false and discuss what properties the formulae describe:

• s
?

|= X where X
min
= 〈c〉tt ∨ 〈Act〉X

• s
?

|= X where X
min
= 〈c〉tt ∨ [Act ]X

• s
?

|= X where X
max
= 〈b〉X

• s
?

|= X where X
max
= 〈b〉tt ∧ [a]X ∧ [b]X

Exercise 1.22 Consider the following LTS:

1. (2 points) Tell whether or not s is strongly bisimilar to t. Justify your answer formally.

2. (2 points) Tell whether or not t satisfies the formula 〈b〉[c]〈c〉〈a〉tt. Justify your answer formally.

3. (3 points) Determine all the states of the LTS that satisfy the following formulas:

• 〈a〉[a][c]ff

• [c]ff ∧ [c]tt
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Solutions

Solution of Exercise 1.1
We show that s1 6∼ t1 using the game characterization of bisimilarity. In particular we show that the

Attacker has the universal winning strategy that follows:

1. The configuration of the game is (s1, t1). The Attacker selects s1 and makes the move: s1
a−→ s4.

The Defender can only reply making the move t1
a−→ t2.

2. The configuration of the game is (s4, t2). The Attacker selects t2 and makes the move: t2
b−→ t1.

The Defender is stuck: there exists no state s such that s4
b−→ s.

We calculate the semantics of the three formulas in the given LTS.
J[a]〈b〉tt ∧ [a]〈c〉ttK =
J[a]〈b〉ttK ∩ J[a]〈c〉ttK =
[·a·](J〈b〉ttK) ∩ [·a·](J〈c〉ttK) =
[·a·]({s2, s3, t2}) ∩ [·a·]({s2, s4, t2, t3}) =
{s2, s3, s4, s5, s6, t1, t2, t3, t4} ∩ {s2, s3, s4, s5, s6, t1, t2, t3, t4} =
{s2, s3, s4, s5, s6, t1, t2, t3, t4}

J〈a〉〈b〉tt ∨ 〈c〉〈b〉[c]ffK =
J〈a〉〈b〉ttK ∪ J〈c〉〈b〉[c]ffK =
〈·a·〉(J〈b〉ttK) ∪ 〈·c·〉(J〈b〉[c]ffK) =
〈·a·〉({s2, s3, t2}) ∪ 〈·c·〉(〈·b·〉(J[c]ffK)) =
{s1, t1} ∪ 〈·c·〉(〈·b·〉({s1, s3, s5, s6, t1, t4}) =
{s1, t1} ∪ 〈·c·〉({s2, t2}) =
{s1, t1} ∪ {} =
{s1, t1}

J[a][b]〈c〉ttK =
[·a·](J[b]〈c〉ttK) =
[·a·]([·b·](J〈c〉ttK)) =
[·a·]([·b·]({s2, s4, t2, t3})) =
[·a·]({s1, s3, s4, s5, s6, t1, t3, t4}) =
{s2, s3, s4, s5, s6, t2, t3, t4}
Solution of Exercise 1.2

Consider the following labelled transition system.

s s1b
oo

b

�� b // s2

a

��

Compute for which sets of states [[X]] ⊆ {s, s1, s2} the following formulae are true.

• X = 〈a〉tt ∨ [b]X

– The equation holds for the following sets of states: {s2, s}, {s2, s1, s}.

• X = 〈a〉tt ∨ ([b]X ∧ 〈b〉tt)
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– The equation holds only for the set {s2}.
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Solution of Exercise 1.3
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Solution of Exercise 1.4
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Solution of Exercise 1.5
If we can show that R = {(s, t), (s1, t1), (s3, t2), (s4, t2), (s2, t3), (s4, t4)} is a strong bisimulation, then

s ∼ t. Indeed R is a strong bisimulation since:

• Consider (s, t) ∈ R. Transitions from s:

– If s
a−→ s1, match by doing t

a−→ t1, and (s1, t1) ∈ R.

– If s
a−→ s2, match by doing t

a−→ t3, and (s2, t3) ∈ R.

– These are all transitions from s.

Transitions from t:

– If t
a−→ t1, match by doing s

a−→ s1, and (s1, t1) ∈ R.

– If t
a−→ t3, match by doing s

a−→ s2, and (s2, t3) ∈ R.

– These are all transitions from t.

• Consider (s1, t1) ∈ R. Transitions from s1:

– If s1
a−→ s3, match by doing t1

a−→ t2 and (s3, t2) ∈ R.

– If s1
b−→ s4, match by doing t1

b−→ t2 and (s4, t2) ∈ R.

Transitions from t1:

– If t1
a−→ t2, match by doing s1

a−→ s3 and (s3, t2) ∈ R.

– If t1
b−→ t2, match by doing s1

b−→ s4 and (s4, t2) ∈ R.

• Consider (s3, t2) ∈ R. Transitions from s3:

– If s3
a−→ s, match by doing t2

a−→ t and (s, t) ∈ R.

Transitions from t2:

– If t2
a−→ t, match by doing s3

a−→ s and (s, t) ∈ R.

• Consider (s4, t2) ∈ R. Transitions from s4:

– If s4
a−→ s, match by doing t2

a−→ t and (s, t) ∈ R.

Transitions from t2:

– If t2
a−→ t, match by doing s4

a−→ s and (s, t) ∈ R.

• Consider (s2, t3) ∈ R. Transitions from s2:

– If s2
a−→ s4, match by doing t3

a−→ t4 and (s4, t4) ∈ R.

Transitions from t3:

– If t3
a−→ t4, match by doing s2

a−→ s4 and (s4, t4) ∈ R.

• Consider (s4, t4) ∈ R. Transitions from s4:

– If s4
a−→ s, match by t4

a−→ t and (s, t) ∈ R.

Transitions from t4:

– If t4
a−→ t, match by s4

a−→ s and (s, t) ∈ R.
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Solution of Exercise 1.6
Let R = {(P,Q), (P1, Q1), (P,Q2), (P1, Q3)}. We only outline the proof; it follows along the lines as

the proof in Exercise ??. You should complete the details.

• From (P,Q) ∈ R either P or Q can do an a transition.

– In either case the response is to match by making an a transition from the remaining state, so
we end up in (P1, Q1) ∈ R.

• From (P1, Q1) ∈ R we end up in either (P,Q) ∈ R or (P,Q2) ∈ R.

• From (P,Q2) ∈ R we can only end up in (P1, Q3) ∈ R.

• From (P1, Q3) ∈ R we end up in either (P,Q) ∈ R or (P,Q2) ∈ R.

Solution of Exercise 1.7
In this exercise you are asked to train yourself in the use of the game characterization for strong

bisimulation. We therefore give universal winning strategy for the attacker or the defender in order to
prove strong nonbisimilarity or bisimilarity. Let A denote the attacker and D the defender.

• Claim: s 6∼ t. The universal winning strategy for A is as follows.

– In configuration (s, t), A chooses s and makes the move s
a−→ s1.

∗ D’s only possible response is to choose t and make the move t
a−→ t1. The current

configuration is now (s1, t1)

– In configuration (s1, t1), A chooses s1 and makes the move s1
b−→ s2.

Now the winning strategy depends on D’s next move and is as follows. D can only choose the

state t1, but has two possible moves. Suppose D chooses t1
b−→ t1. Then the current configuration

becomes (s2, t1). Now A choose s2 and makes the move s2
a−→ s. Then D looses since there

are no a-transitions from t1. If D uses the other possible move, namely t1
b−→ t2, the current

configuration becomes (s2, t2). But then A chooses s2 and makes the move s2
b−→ s2. Again D

looses since there are no b-transitions from t2.

Remark: there is another winning strategy for the attacker which is easier to describe; try to find it.

• Claim: s ∼ u: The universal winning strategy for D is as follows.

– Starting in (s, u), A has two possible moves. Either (a) s
a−→ s1 or (b) u

a−→ u1.

∗ If A chooses (a), then D takes the move u
a−→ u1, and the current configuration becomes

(s1, u1).

∗ If A chooses (b), then D takes the move s
a−→ s1, and the current configuration again

becomes (s1, u1).

– In configuration (s1, u1), A can choose either (a) s1
b−→ s2, or (b) u1

b−→ u3.

∗ If A chooses (a), then D takes the move u1
b−→ u3, and the current configuration becomes

(s2, u3).

∗ If A chooses (b), then D takes the move s1
b−→ s2, and the current configuration again

becomes (s2, u3).
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– In configuration (s2, u3), A can choose either (a) s2
b−→ s2 or (b) s2

a−→ s or (c) u3
a−→ u

or (d) u3
b−→ u2.

∗ If A chooses (a), then D takes the move u3
b−→ u2 and the current configuration becomes

(s2, u2).

∗ If A chooses (b), then D takes the move u3
a−→ u and the current configuration becomes

(s, u) which is exactly the start configuration.

∗ If A chooses (c), then D takes the move s2
a−→ s and the current configuration becomes

(s, u) which is the start configuration.

∗ If A chooses (d), then D takes the move s2
b−→ s2 and the current configuration becomes

(s2, u2) as when the attacker played (a). Hence from now we only need to consider games
form the state (s2, u2).

Now we can argue that D has a winning strategy. From (s2, u2), D’s response to any move
from A will be to take the same transition. This means that the next configuration is either
(s2, u2) or (s, u). The game will be infinite, and hence D is the winner.

• Claim: s 6∼ v: The universal winning strategy for A is as follows.

– In configuration (s, v), A makes the move s
a−→ s1.

∗ Now D must make the move v
a−→ v1 and the current configuration becomes (s1, v1).

– In configuration (s1, v1), A chooses v1
b−→ v2.

∗ D must make the move s1
b−→ s2. The current configuration is (s2, v2).

Now A wins since from (s2, v2) as he can choose to make the move s2
b−→ s2. Since there

are no b-transitions from v2, D looses.

Solution of Exercise 1.8
The general idea in this exercise is that in order to prove that P ∼ Q you define some binary relation

R such that (P,Q) ∈ R, and then proceed to prove that R is indeed a strong bisimulation.

• Define R = {(P |Nil, P ) | P is a CCS process}. We show that R is a strong bisimulation.

– Suppose for some α ∈ Act that P |Nil α−→ P ′|Nil. We now have to find some process P̃
such that P

α−→ P̃ and (P ′|Nil, P̃ ) ∈ R. Now use the transition relation. The only rule that
could have been used is the COM1-rule.

P
α−→ P ′

P |Nil α−→ P ′|Nil
.

Now set P̃ = P ′. Then we are finished since we now know that P
α−→ P ′ and by the definition

of R, (P ′|Nil, P̃ ) = (P ′|Nil, P ′) ∈ R.

– Symmetrically we must prove that when P
α−→ P ′, then some P̃ exists so that P |Nil α−→ P̃

and (P̃ , P ′) ∈ R. But this is easy. By using the COM1-rule we have

P
α−→ P ′

P |Nil α−→ P ′|Nil
.

So we simply let P̃ = P ′|Nil. And again by definition of R, we have that (P̃ , P ′) =
(P ′|Nil, P ′) ∈ R. This proves that R, is a bisimulation. And since (P |Nil, P ) ∈ R, this
means that P |Nil ∼ P .
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• This time we show that P + Nil ∼ P by giving a universal winning strategy for the defender.
Remember that the game is played on the LTS, so we will just denote the states of the LTS by the
CCS-expression. If the attacker chooses P +Nil, then the only possible moves are those of P since
Nil has no transitions. So if P

a−→ P ′, the attacker can make the move P + Nil
a−→ P ′. But

then the defender can make the move P
a−→ P ′. The current configuration is now (P ′, P ′). From

now on the defenders strategy is do to the same as the attacker. Either the game is infinite, in
which case the defender wins. Or the game is finite. But then the defender wins, since the attacker
cannot make any move because both processes are stuck. Similarly if the attacker plays P

a−→ P ′.
Then the defender moves P +Nil

a−→ P ′, and the configuration again becomes (P ′, P ′).

• We show now that R = {(P |Q,Q|P ) | P,QareCCS − expressions} is a strong bisimulation.
We only give an outline of the proof, the method is the same as in the first bullet. Suppose
P |Q a−→ P ′|Q′.

– If COM3-rule was applied, we can argue as follows:

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

But then since a = a we can use the same rule to derive:

Q
a−→ Q′ P

a−→ P ′

Q|P τ−→ Q′|P ′
.

And by the definition of R, we know that (P ′|Q′, Q′|P ′) ∈ R.

– If COM1 or COM2 rule was used, we do the following analysis. Suppose the COM1-rule was
the one used. Then we know that

P
a−→ P ′

P |Q a−→ P ′|Q
.

Again one can now apply the COM2-rule and derive

P
a−→ P ′

Q|P a−→ Q|P ′
,

and (P ′|Q,Q|P ′) ∈ R. In order to finish the proof we need to argue for the symmmetric
case (i.e. when the rule COM2 was used from P |Q). The argument for this case is similar as
before.

The case when Q|P a−→ Q′|P ′ is completely symmetric.

Solution of Exercise 1.9
Assume that s ∼ t. We will show both trace inclusions as follows.

• Traces(s) ⊆ Traces(t): Let w = a1a2 . . . an be a trace from Traces(s). The attacker will play
the sequence w in n-rounds of the strong bisimulation game, always from the left processes s. As
s ∼ t, the defender has to be able to answer to such an attack and hence he has to be able to do
the same sequence w from the right process t. This means that w ∈ Traces(t).

• Traces(t) ⊆ Traces(s): The argument is completely symmetric, the attacker plays the whole
sequence from the right process t and the defender has to be able to match it in the left process.
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This implies that Traces(s) = Traces(t).

Solution of Exercise 1.10
The answer is no for all the cases and the relation R of strong bisimulation from Exercise ?? can serve

as a counter example for reflexivity and symmetry.

Solution of Exercise 1.11

One possible solution is as follows.

s

a

��
s1

b

WW

b

DD

b

��

c

��
s2 s4

Solution of Exercise 1.12
Let K

def
= P . We define

R = {(K,P )} ∪ {(P ′, P ′) | P’ is a CCS process}.

We will argue that R is a strong bisimulation. We analyze only the pair (K,P ) from R as any pair of the
form (P ′, P ′) can be safely added to R (why?).

Let K
a−→ P ′. We must find P̃ such that P

a−→ P̃ and (P ′, P̃ ) ∈ R. The transition K
a−→ P ′ must

have been derived using the CON-rule with the premise P
a−→ P ′. Then we can just let P̃ = P ′ as we

know that P
a−→ P ′, and (P ′, P ′) ∈ R.

Let P
a−→ P ′. Then using the SOS rule CON we know that also K

a−→ P ′ and again (P ′, P ′) ∈ R.

Solution of Exercise 1.13
Decide whether the following claims are true or false. Support your claims either by using bisimulation

games or directly the definition of strong/weak bisimilarity.

• a.τ.Nil 6∼ τ.a.Nil

– The attacker plays the action a in the left process and the defender does not have any a-move
available in the right process and looses.

• τ.a.A+ b.B 6∼ τ.(a.A+ b.B)

– The attacker plays the action b from the left process, there is no action b available in the right
process in the first round. The attacker clearly wins.

• τ.Nil + (a.Nil | a.Nil) r {a, b} ∼ τ.Nil
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– R = {(τ.Nil +(a.Nil | a.Nil)r{a, b}, τ.Nil), (Nil ,Nil), ((Nil |Nil)r{a, b},Nil)} is a strong
bisimulation.

• a.(τ.Nil + b.B) 6∼ a.Nil + a.b.B

– In the first round the attacker plays from the left the action a and in the second round he plays
again from left the action τ . The defender looses as he can never play the same sequence of
a followed by τ from the right process.

The same processes but weak bisimilarity instead of the strong one.

• a.τ.Nil ≈ τ.a.Nil

– R = {(a.τ.Nil , τ.a.Nil), (τ.Nil ,Nil), (Nil ,Nil), (a.τ.Nil , a.Nil)} is a weak bisimulation.

• τ.a.A+ b.B 6≈ τ.(a.A+ b.B)

– The attacker plays the action τ from the left and reaches the process a.A. The defender can
either answer by (i) doing nothing on the right and staying in the process τ.(a.A+ b.B) or (ii)
by playing the action τ and reaching a.A + b.B. In case (i) the attacker will play in second
round on the right the action τ , the defender can only stay in a.A and in the next round the
attacker wins by making the b-move on the right. In case (ii) the attacker wins already in the
second round by playing b from the right process.

• τ.Nil + (a.Nil | a.Nil) r {a, b} ≈ τ.Nil

– These two processes are even strongly bisimilar so they must be also weakly bisimilar.

• a.(τ.Nil + b.B) 6≈ a.Nil + a.b.B

– The attacker plays a.Nil + a.b.B
a−→ b.B on the right, the defender can answer either by

a.(τ.Nil + b.B)
a

=⇒ τ.Nil + b.B or by a.(τ.Nil + b.B)
a

=⇒ Nil . In the first case the attacker
plays τ.Nil + b.B

τ−→ Nil and the defender can only do nothing and will loose in the next
round. In the second case, the attacker plays the action b from the left and the defender
looses.

Home exercise: try to verify your claims by using the tool CWB.

Solution of Exercise 1.14
We now argue that P + P ∼ P using the game characterization. We start from the configuration

(P +P, P ). Suppose the attacker chooses P +P
a−→ P ′. Then we know (from the SOS transition rules)

that this transition can only have been derived if P
a−→ P ′. So, of course, the defender replies by doing

P
a−→ P ′. The current configuration becomes (P ′, P ′) from which the defender always has a winning

strategy by simply doing exactly the same as the attacker. Conversely, if the attacker from (P + P, P )
chooses P

a−→ P ′ then the defender responds by playing P + P
a−→ P ′ and the current configuration

becomes again (P ′, P ′).
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Solution of Exercise 1.15
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Solution of Exercise 1.16
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Solution of Exercise 1.17
Consider the following labelled transition system.

s

a

��

a

��
s1

a

��

b

��

s2

a

��
s3

a

AA

s4

a

ii

1. Decide whether the state s satisfies the following formulae of Hennessy-Milner logic:

• s |= 〈a〉tt
• s 6|= 〈b〉tt
• s 6|= [a]ff

• s |= [b]ff

• s 6|= [a]〈b〉tt
• s |= 〈a〉〈b〉tt
• s |= [a]〈a〉[a][b]ff

• s |= 〈a〉
(
〈a〉tt ∧ 〈b〉tt

)
• s |= [a]

(
〈a〉tt ∨ 〈b〉tt

)
• s 6|= 〈a〉

(
[b][a]ff ∧ 〈b〉tt

)
• s 6|= 〈a〉

(
[a](〈a〉tt ∧ [b]ff) ∧ 〈b〉ff

)
2. Compute the following sets according to the denotational semantics for Hennessy-Milner logic.

•

[[[a][b]ff ]] = [·a·][[[b]ff ]]

= [·a·][·b·][[ff ]]

= [·a·][·b·]∅

= [·a·]{P | ∀P ′.P
b−→ P ′ ⇒ P ′ ∈ ∅}

= [·a·]{s, s3, s2, s4}
=

{
P | ∀P ′.P

a−→ P ′ ⇒ P ′ ∈ {s, s3, s2, s4}
}

= {s1, s2, s3, s4}

•

[[〈a〉
(
〈a〉tt ∧ 〈b〉tt

)
]] = 〈·a·〉[[〈a〉tt ∧ 〈b〉tt]]

= 〈·a·〉
(
[[〈a〉tt]] ∩ [[〈b〉tt]]

)
= 〈·a·〉

(
〈·a·〉Proc ∩ 〈·b·〉Proc)

= 〈·a·〉
(
{s, s1, s2, s3, s4} ∩ {s1}

)
= 〈·a·〉{s1}

= {s}
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•

[[[a][a][b]ff ]] = [·a·][·a·][·b·]∅
= [·a·][·a·]{s, s2, s3, s4}

= [·a·]{s1, s2, s3, s4}
= {s, s1, s2}

•

[[[a]
(
〈a〉tt ∨ 〈b〉tt

)
]] = [·a·][[〈a〉tt ∨ 〈b〉tt]]

= [·a·]
(
〈·a·〉Proc ∪ 〈·b·〉Proc

)
= [·a·]{s, s1, s2, s3, s4}

= {s, s1, s2, s3, s4}

Solution of Exercise 1.18
Distingushing HML-formulae are as follows.

• Let F1 = 〈a〉[b]〈b〉tt. Then s |= F1, but t 6|= F1.

• Let F2 = 〈a〉[b]〈a〉tt. Then s |= F2 but v 6|= F3.

• Let F3 = 〈a〉〈b〉
(
〈a〉tt ∧ 〈b〉tt

)
. Then t 6|= F3 but v |= F3.

Solution of Exercise 1.19
For each of the following CCS expressions decide whether they are strongly bisimilar and if not, find

a distinguishing formula in Hennessy-Milner logic.

• b.a.Nil + b.Nil and b.(a.Nil + b.Nil)

– They are not bisimilar. Let F1 = [b]〈b〉tt. Then b.a.Nil+b.Nil 6|= F1 but b.(a.Nil+b.Nil) |= F1.

• a.(b.c.Nil + b.d.Nil) and a.b.c.Nil + a.b.d.Nil

– They are not bisimilar. Let F2 = [a]
(
〈b〉〈c〉tt∧ 〈b〉〈d〉tt

)
. Then a.(b.c.Nil + b.d.Nil) |= F2 but

a.b.c.Nil + a.b.d.Nil 6|= F2.

• a.Nil | b.Nil and a.b.Nil + b.a.Nil

– They are bisimilar.

• (a.Nil | b.Nil) + c.a.Nil and a.Nil | (b.Nil + c.Nil)

– They are not bisimilar. Let F3 = [a]〈c〉tt. Then (a.Nil | b.Nil)+c.a.Nil 6|= F3 but a.Nil | (b.Nil+
c.Nil) |= F3.

Home exercise: verify your claims in CWB (use the strongeq and checkprop commands) and check
whether you found the shortest distinguishing formula (use the dfstrong command).
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Solution of Exercise 1.21
Consider the following labelled transition system.

s b // s1

a

��

b
qq

s3

c

OO

b

11 s2
boo

Using the game characterization for recursive Hennessy-Milner formulae decide whether the following
claims are true or false and discuss what properties the formulae describe:

• s |= X where X
min
= 〈c〉tt ∨ 〈Act〉X

– A universal winning strategy for the defender starting from (s,X) is as follows:

(s,X) → (s, 〈c〉tt ∨ 〈Act〉X)
D−→ (s, 〈Act〉X)

D−→ (s1, X)

→ (s1, 〈c〉tt ∨ 〈Act〉X)
D−→ (s1, 〈Act〉X)

D−→ (s2, X)

→ (s2, 〈c〉tt ∨ 〈Act〉X)
D−→ (s2, 〈Act〉X)

D−→ (s3, X)

→ (s3, 〈c〉tt ∨ 〈Act〉X)
D−→ (s3, 〈c〉tt)

D−→ (s, tt),

where (s, tt) by definition is a winning configuration for the defender.

• s 6|= X where X
min
= 〈c〉tt ∨ [Act ]X

– A universal winning strategy for the attacker is as follows: (s,X)→ (s, 〈c〉tt∨ [Act ]X) Then if
the defender plays 〈c〉tt, he loses since there are no c-transitions from s, thus the defender must

play (s, 〈c〉tt ∨ [Act ]X)
D−→ (s, [Act ]X). Then the attacker plays (s, [Act ]X)

A−→ (s1, X).
And we have (s1, X) → (s1, 〈c〉tt ∨ [Act ]X). Now for similar reasons as above the defender

must choose to play (s1, 〈c〉tt∨[Act ]X)
D−→ (s1, [Act ]X). The attacker plays (s1, [Act ]X)

A−→
(s1, X) which is a configuration we have seen earlier. Thus either the play is infinite, in which
case the attacker wins since X is defined as the least fixed-point. Or the play is finite, in which
case the attacker also wins.

• s |= X where X
max
= 〈b〉X

– A universal winning strategy for the defender is:

(s,X)→ (s, 〈b〉X)
D−→ (s1, X)→ (s1, 〈b〉X)

D−→ (s1, X).

Thus the play is infinite, and since X is defined as the greatest fixed-point, the defender wins.

• s |= X where X
max
= 〈b〉tt ∧ [a]X ∧ [b]X

– Universal winning strategy for the defender: We have (s,X)→ (s, 〈b〉tt∧ [a]X∧ [b]X). Now if

the attacker plays (s, 〈b〉tt∧[a]X∧[b]X)
A−→ (s, 〈b〉tt) he loses since the defender can then play

(s, 〈b〉tt) D−→ (s1, tt). Furthermore if the attacker plays (s, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s, [a]X),

then he also loses since he is stuck in the configuration (s, [a]X). The third option for the

attacker is to choose (s, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s, [b]X)

A−→ (s1, X).

Expanding X we get (s1, X) → (s1, 〈b〉tt ∧ [a]X ∧ [b]X). From here if the attacker plays

(s1, 〈b〉tt∧[a]X∧[b]X)
A−→ (s1, 〈b〉tt) he loses since the defender can play (s1, 〈b〉tt)

D−→ (s1, tt).
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If the attacker plays (s1, 〈b〉tt∧ [a]X ∧ [b]X)
A−→ (s1, [b]X), then the only possible next move

is (s1, [b]X)
A−→ (s1, X) which is a previously encountered configuration. The last option for

the attacker is to play (s1, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s1, [a]X)

A−→ (s2, X).

Expanding the encoding we get (s2, X)→ (s2, 〈b〉tt∧ [a]X ∧ [b]X). Again if the attacker plays

(s2, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s2, 〈b〉tt) he loses by the defenders move (s2, 〈b〉tt)

D−→ (s3, tt).

If the attacker plays (s2, 〈b〉tt∧ [a]X ∧ [b]X)
A−→ (s2, [a]X) he loses since he is stuck. Finally

he can play (s2, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s2, [b]X)

A−→ (s3, X).

Expanding X we obtain (s3, X) → (s3, 〈b〉tt ∧ [a]X ∧ [b]X). Now playing (s3, 〈b〉tt ∧ [a]X ∧
[b]X)

A−→ (s3, 〈b〉tt) he loses by the defenders move (s3, 〈b〉tt)
D−→ (s3, tt). If the attacker plays

(s3, 〈b〉tt ∧ [a]X ∧ [b]X)
A−→ (s3, [a]X) he is stuck. Finally the attacker can play (s3, 〈b〉tt ∧

[a]X ∧ [b]X)
A−→ (s3, [b]X)

A−→ (s3, X) which is a previously encountered configuration.

Thus either the attacker loses in a finite play, or the play is infinite in which case the defender
wins since X is defined as the greatest fixed-point.
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Solution of Exercise 1.22
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2 Weak Bisimulation

Exercise 2.1 Consider the following labelled transition system.

s

τ

::

a

��

s1
τ

::

τ
||

b

��

s2

τ
||

τ

��
s3 s4 s5

t τ //

a

��

b

��

t1 τ
ww

t2 t3

Show that s ≈ t by finding a weak bisimulation R containing the pair (s, t).

Exercise 2.2 In the weak bisimulation game the attacker is allowed to use
a−→ moves for the attacks and

the defender can use
a

=⇒ in response. Argue that if we modify the game rules so that the attacker can also
use the long moves

a
=⇒ then this does not provide any additional power for the attacker. Conclude that

both versions of the game provide the same answer about bisimilarity/nonbisimilarity of two processes.
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Solutions

Solution of Exercise 2.1
Let R = {(s, t), (s1, t), (s2, t), (s3, t2), (s4, t3), (s5, t1)}. Now one can argue that R is a weak bisimu-

lation as follows.

• Transitions from the pair (s, t): if s
a−→ s3 then t

a
=⇒ t2 and (s3, t2) ∈ R. If s

τ−→ s1 then

t
τ

=⇒ t and (s1, t) ∈ R. If t
a−→ t2 then s

a
=⇒ s3 and (s3, t2) ∈ R. If t

b−→ t3 then s
b

=⇒ s4 and
(s4, t3) ∈ R. If t

τ−→ t1 then s
τ

=⇒ s5 and (s5, t1) ∈ R.

• The transitions from the remaining pairs can be checked in a similar way.

Solution of Exercise 2.2
Observe that each long attack can be simulated (in more rounds) by doing in series all single steps

that are contained in the long move, so the defender in fact has an answer even to the long move by
combining the answers to the series
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3 Complete Lattices and Fix Points

Exercise 3.1 Draw a graphical representation of the complete lattice (2{a,b,c},⊆) and compute supremum
and infimum of the following sets:

• u{{a}, {b}} = ?

• t{{a}, {b}} = ?

• u{{a}, {a, b}, {a, c}} = ?

• t{{a}, {a, b}, {a, c}} = ?

• u{{a}, {b}, {c}} = ?

• t{{a}, {b}, {c}} = ?

• u{{a}, {a, b}, {b}, ∅} = ?

• t{{a}, {a, b}, {b}, ∅} = ?

Exercise 3.2 Prove that for any partially ordered set (D,v) and any X ⊆ D, if supremum of X (tX)
and infimum of X (uX) exist then they are uniquely defined. (Hint: use the definition of supremum and
infimum and antisymmetry of v.)

Exercise 3.3 Let (D,v) be a complete lattice. What are t∅ and u∅ equal to?

Exercise 3.4 Consider the complete lattice (2{a,b,c},⊆). Define a function f : 2{a,b,c} → 2{a,b,c} such
that f is monotonic.

• Compute the greatest fixed point by using directly the Tarski’s fixed point theorem.

• Compute the least fixed point by using the Tarski’s fixed point theorem for finite lattices (i.e. by
starting from ⊥ and by applying repeatedly the function f until the fixed point is reached).
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Solutions

Solution of Exercise 3.1
Draw a graphical representation of the complete lattice (2{a,b,c},⊆) and compute supremum and

infimum of the sets below.
The complete lattice:

{a, b, c}

{a, b}

@@

{a, c}

OO

{b, c}

^^

{a}

OO @@

{b}

^^ @@

{c}

^^ OO

∅

^^ OO @@

• u{{a}, {b}} = ∅

• t{{a}, {b}} = {a, b}

• u{{a}, {a, b}, {a, c}} = {a}

• t{{a}, {a, b}, {a, c}} = {a, b, c}

• u{{a}, {b}, {c}} = ∅

• t{{a}, {b}, {c}} = {a, b, c}

• u{{a}, {a, b}, {b}, ∅} = ∅

• t{{a}, {a, b}, {b}, ∅} = {a, b}

Solution of Exercise 3.2
Prove that for any partially ordered set (D,v) and any X ⊆ D, if supremum of X (tX) and infimum

of X (uX) exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and
antisymmetry of v.)

We prove the claim for the supremum (least upper bound) of X. The arguments for the infimum are
symmetric. Let d1, d2 ∈ D be two supremums of a given set X. This means that X v d1 and X v d2
as both d1 and d2 are upper bounds of X. Now because d1 is the least upper bound and d2 is an upper
bound we get d1 v d2. Similarly, d2 is the least upper bound and d1 is an upper bound so d2 v d1.
However, from antisymmetry and d1 v d2 and d2 v d1 we get that d1 = d2.
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S f(S)
∅ {a}
{a} {a}
{b} {a}
{c} {a}
{a, b, c} {a, b}
{a, b} {a, b}
{a, c} {a, b}
{b, c} {a, b}

Table 1: Definition of a monotonic function f in Exercise ??.

Solution of Exercise 3.3
Let (D,v) be a complete lattice. What are t∅ and u∅ equal to?

• t∅ = ⊥ = uD.

• u∅ = > = tD.

Solution of Exercise 3.4
Consider the complete lattice (2{a,b,c},⊆). Define a function f : 2{a,b,c} → 2{a,b,c} such that f is

monotonic.
For example we define f as in Table 1 (note that there are many possibilites).
The function f is monotonic which we can verify by a case inspection.

• Compute the greatest fixed point by using directly the Tarski’s fixed point theorem.

– According to Tarski’s fixed point theorem the largest fixed point zmax is given by zmax = tA,
where

A =
{
x ∈ 2{a,b,c} |x v f(x)

}
.

In our case, by the definition of f we get A =
{
∅, {a}, {a, b}

}
. The supremum of A in 2{a,b,c}

is {a, b} so by Tarski’s fixed point theorem, the largest fixed point of f is {a, b}.

• Compute the least fixed point by using the Tarski’s fixed point theorem for finite lattices (i.e. by
starting from ⊥ and by applying repeatedly the function f until the fixed point is reached).

– First note that ⊥ = u2{a,b,c} = ∅. We now repeatedly apply f until it stabilizes

f(∅) = {a}
f(f(∅)) = f({a}) = {a}

and hence the least fixed point of f is {a}.
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